2个回答
展开全部
f(π/6)=f(π/3),说明函数图像关于直线x=(π/6+π/3)/2(即x=π/4)对称。
f(x)在区间(π/6,π/3)内有最大值,无最小值,所以x=π/4时取到最大值。
且知函数周期大于π/3-π/6=π/6.
x=π/4时取到最大值,则wπ/4+π/3=2kπ+π/2,w=8k+2/3.k∈Z.
又周期为2π/w>π/6,0<w<12.
故k=0时,w=2/3或k=1时,w=26/3适合题意。
所以w最大为26/3,w最小为2/3
f(x)在区间(π/6,π/3)内有最大值,无最小值,所以x=π/4时取到最大值。
且知函数周期大于π/3-π/6=π/6.
x=π/4时取到最大值,则wπ/4+π/3=2kπ+π/2,w=8k+2/3.k∈Z.
又周期为2π/w>π/6,0<w<12.
故k=0时,w=2/3或k=1时,w=26/3适合题意。
所以w最大为26/3,w最小为2/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询