数学归纳法证明,求助用数学

 我来答
zgrbkr
高能答主

2018-03-09 · 有什么不懂的尽管问我
知道顶级答主
回答量:7.9万
采纳率:94%
帮助的人:8069万
展开全部
数学归纳法的原理,通常被规定作为自然数公理(参见皮亚诺公理)。但是在另一些公理的基础上,它可以用一些逻辑方法证明。数学归纳法原理可以由下面的良序性质(最小自然数原理)公理可以推出:
自然数集是良序的。(每个非空的正整数集合都有一个最小的元素)
比如{1, 2, 3 , 4, 5}这个正整数集合中有最小的数——1.
下面我们将通过这个性质来证明数学归纳法:
对于一个已经完成上述两步证明的数学命题,我们假设它并不是对于所有的正整数都成立。
对于那些不成立的数所构成的集合S,其中必定有一个最小的元素k。(1是不属于集合S的,所以k>1)
k已经是集合S中的最小元素了,所以k-1是不属于S,这意味着k-1对于命题而言是成立的——既然对于k-1成立,那么也对k也应该成立,这与我们完成的第二步骤矛盾。所以这个完成两个步骤的命题能够对所有n都成立。
注意到有些其它的公理确实是数学归纳法原理的可选的公理化形式。更确切地说,两者是等价的。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式