高等数学问题,求解

 我来答
donleecn
2018-07-09 · TA获得超过8721个赞
知道大有可为答主
回答量:7665
采纳率:72%
帮助的人:2732万
展开全部
充分性:当lim(x->0)[f(x)-f(-x)]/x存在
表示:lim(x->0)[f(x)-f(-x)]/x=lim(x->0)[f(x)-f(0)-f(-x)+f(0)]/(x-0)
=lim(x->0){[f(x)-f(0)]/(x-0)-[f(-x)-f(0)]/(x-0)}
=lim(x->0){[f(x)-f(0)]/(x-0)+[f(x)-f(0)]/(x-0)} x->-x变换
=2lim(x->0)[f(x)-f(0)]/(x-0) 存在,即lim(x->0)[f(x)-f(0)]/(x-0)极限存在,f'(0)存在。
必要性:若f'(0)存在,即lim(x->0)[f(x)-f(0)]/(x-0)存在,反推以上过程即得。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式