2个回答
北京埃德思远电气技术咨询有限公司
2023-07-25 广告
2023-07-25 广告
潮流计算是一种用于分析和计算电力系统中有功功率、无功功率、电压和电流分布的经典方法。它是在给定电力系统网络拓扑、元件参数和发电、负荷参量条件下,计算电力系统中各节点的有功功率、无功功率、电压和电流的实际运行情况。潮流计算主要用于研究电力系统...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
展开全部
f(x)
=(2/π)(cosx)^2 ;-π/2≤x≤π/2
=0 ; elsewhere
E(X)
=∫(-π/2->π/2) xf(x) dx
=∫(-π/2->π/2)(2/π)x(cosx)^2 dx
= 0
E(X^2)
=∫(-π/2->π/2) x^2.f(x) dx
=∫(-π/2->π/2)(2/π) x^2. (cosx)^2 dx
=2∫(0->π/2)(2/π) x^2. (cosx)^2 dx
=(2/π)∫(0->π/2) x^2. (1+cos2x) dx
=[2/(3π)] [x^3]|(0->π/2) +(1/π)∫(0->π/2) x^2. dsin2x
=π^2/12 + (1/π) [x^2.sin2x]|(0->π/2) - (2/π)∫(0->π/2) xsin2x dx
=π^2/12 + 0 + (1/π)∫(0->π/2) xdcos2x
=π^2/12 + (1/π)[xcos2x]|(0->π/2) - (1/π)∫(0->π/2) cos2x dx
=π^2/12 - 1/2 + [1/(2π)] [ sin2x]|(0->π/2)
=π^2/12 - 1/2
D(X)
=E(X^2)-[E(X)]^2
=π^2/12 - 1/2
=(2/π)(cosx)^2 ;-π/2≤x≤π/2
=0 ; elsewhere
E(X)
=∫(-π/2->π/2) xf(x) dx
=∫(-π/2->π/2)(2/π)x(cosx)^2 dx
= 0
E(X^2)
=∫(-π/2->π/2) x^2.f(x) dx
=∫(-π/2->π/2)(2/π) x^2. (cosx)^2 dx
=2∫(0->π/2)(2/π) x^2. (cosx)^2 dx
=(2/π)∫(0->π/2) x^2. (1+cos2x) dx
=[2/(3π)] [x^3]|(0->π/2) +(1/π)∫(0->π/2) x^2. dsin2x
=π^2/12 + (1/π) [x^2.sin2x]|(0->π/2) - (2/π)∫(0->π/2) xsin2x dx
=π^2/12 + 0 + (1/π)∫(0->π/2) xdcos2x
=π^2/12 + (1/π)[xcos2x]|(0->π/2) - (1/π)∫(0->π/2) cos2x dx
=π^2/12 - 1/2 + [1/(2π)] [ sin2x]|(0->π/2)
=π^2/12 - 1/2
D(X)
=E(X^2)-[E(X)]^2
=π^2/12 - 1/2
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询