当02x,该怎么证明这个不等式?
1个回答
展开全部
解引入函数f(x)=sinx+tanx-2x,则:
f′(x)
=cosx+1/(cosx)^2-2
=[(cosx)^3-2(cosx)^2+cosx+1-cosx]/(cosx)^2
=[cosx(cosx-1)^2+1-cosx]/(cosx)^2。
∵x是锐角,∴0<cosx<1,∴f′(x)>0,∴f(x)在(0,π/2)上是增函数,
又f(0)=sin0+tan0-2×0=0,∴f(x)在(0,π/2)上恒为正数,
∴在(0,π/2)上,sinx+tanx-2x>0,∴在(0,π/2)上,sinx+tanx>2x。
f′(x)
=cosx+1/(cosx)^2-2
=[(cosx)^3-2(cosx)^2+cosx+1-cosx]/(cosx)^2
=[cosx(cosx-1)^2+1-cosx]/(cosx)^2。
∵x是锐角,∴0<cosx<1,∴f′(x)>0,∴f(x)在(0,π/2)上是增函数,
又f(0)=sin0+tan0-2×0=0,∴f(x)在(0,π/2)上恒为正数,
∴在(0,π/2)上,sinx+tanx-2x>0,∴在(0,π/2)上,sinx+tanx>2x。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询