关于矩阵相似对角化的概念问题!!
书上给出了结论:若n阶方阵A的n个特征值互不相等,则A可相似对角化为什么反之:A可相似对角化的话,n阶方阵A的n个特征值不一定全都不相等,可能包含有重根在里面???而且n...
书上给出了结论:若n阶方阵A的n个特征值互不相等,则A可相似对角化
为什么反之:A可相似对角化的话,n阶方阵A的n个特征值不一定全都不相等,可能包含有重根在里面???
而且n阶方阵A可相似对角化仅仅与A有n个线性无关的特征向量互为充要条件
这明显是说:只要A有n个线性无关的特征向量,则可以退出A能相似对角化,反之亦然
可是A有n个互不相等的特征向量,也能推出A可相似对角化。但是!反过来就不行了.....
我也搞不懂为什么
求高手指教!
其实也就是说:A有n个互不相等的特征向量,可以推出A可相似对角化:反之,A可相似对角化,但是推不出A有n个互不相等的特征向量,这是为什么呢?
不过你好像已经回答了.... 展开
为什么反之:A可相似对角化的话,n阶方阵A的n个特征值不一定全都不相等,可能包含有重根在里面???
而且n阶方阵A可相似对角化仅仅与A有n个线性无关的特征向量互为充要条件
这明显是说:只要A有n个线性无关的特征向量,则可以退出A能相似对角化,反之亦然
可是A有n个互不相等的特征向量,也能推出A可相似对角化。但是!反过来就不行了.....
我也搞不懂为什么
求高手指教!
其实也就是说:A有n个互不相等的特征向量,可以推出A可相似对角化:反之,A可相似对角化,但是推不出A有n个互不相等的特征向量,这是为什么呢?
不过你好像已经回答了.... 展开
2个回答
展开全部
n阶矩阵A可相思对角化有两个充要条件:
1、n阶矩阵A相似于对角矩阵的充要条件是A有n个线性无关的特征向量。
2、n阶矩阵A可对角化的充要条件是对应于A的每个特征值的线性无关的特征向量的个数恰好等于该特征值的重数,即设是矩阵A的重特征值。
因此,有两种情况使得n阶矩阵A可对角化,第一种情况:若n阶方阵A的n个特征值互不相等,n阶方阵A有n个线性无关的特征向量,则A可相似对角化,即书上的结论。
反之,若n阶方阵A可对角化的话,可能是有两种情况,若是第一种,则n个特征值全不相等;若是第二种,则n阶方阵A的相等的特征值,即n个特征值不一定全都不相等。
扩展资料:
矩阵相似的性质:
1、两者的秩相等;
2、两者的行列式值相等;
3、两者的迹数相等;
4、两者拥有同样的特征值,尽管相应的特征向量一般不同;
5、两者拥有同样的特征多项式;
6、两者拥有同样的初等因子。
参考资料来源:百度百科-相似矩阵
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询