展开全部
1. 方程xy=e^(x+y)确定的隐函数y的导数:
y'=[e^(x+y)-y]/[x-e^(x+y)]
解题过程:
方程两边求导:
y+xy'=e^(x+y)(1+y')
y+xy'=e^(x+y)+y'e^(x+y)
y'[x-e^(x+y)]=e^(x+y)-y
得出最终结果为:
y'=[e^(x+y)-y]/[x-e^(x+y)]
y'=[e^(x+y)-y]/[x-e^(x+y)]
解题过程:
方程两边求导:
y+xy'=e^(x+y)(1+y')
y+xy'=e^(x+y)+y'e^(x+y)
y'[x-e^(x+y)]=e^(x+y)-y
得出最终结果为:
y'=[e^(x+y)-y]/[x-e^(x+y)]
更多追问追答
追答
5. 两边对x求导
则1*cosy+x*(-siny)*y'=cos(x+y)*(1+y')
cosy-xsiny*y'=cos(x+y)+cos(x+y)*y'
所以y'=[cosy-cos(x+y)]/[xsiny+cos(x+y)]
7. e^y=cos(x+y)
(e^y).y' = -sin(x+y) .( 1+ y')
(e^y + sin(x+y) ) y' = -sin(x+y)
y' =-sin(x+y)/(e^y + sin(x+y) )
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询