求极限,x趋1/2,π-3arccosx等价于a(x-1/2)^b,求a,b
1个回答
展开全部
f(x)=π-3arccosx => f(1/2) =0
f'(x) = 3/√(1-x^2) => f'(1/2)/1! = 2√3
x->1/2
π-3arccosx = 2√3(x-1/2)^1 +o(x-1/2)
a=2√3 , b=1
f'(x) = 3/√(1-x^2) => f'(1/2)/1! = 2√3
x->1/2
π-3arccosx = 2√3(x-1/2)^1 +o(x-1/2)
a=2√3 , b=1
追问
不好意思这个方法看不太懂。。有其他方法么
追答
lim(x->1/2) (π-3arccosx)/[a(x-1/2)^b] =1 (0/0分子分母分别求导)
lim(x->1/2) [3/√(1-x^2)]/[ab(x-1/2)^(b-1)] =1
=lim(x->1/2) 2√3/[ab(x-1/2)^(b-1)] =1
2√3/(ab) = 1 and b-1=0
a=2√3 , b=1
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询