线性代数线性方程组解的判定?
非齐次线性方程组解的判定:当系数矩阵的秩等于增广矩阵的秩,那么非齐次线性方程组有解。当r(A)=r(A|b)=n时有唯一解,当r(A)=r(A|b)<n时有无穷多解。当r(A)不等于r(A|b)时方程组无解。
题目中的线性方程组根据解的判定定理判定为:r(A)=r(A|b)=4。所以线性方程组有唯一解。
扩展资料:
解的存在性
非齐次线性方程组Ax=b有解的充分必要条件是:系数矩阵的秩等于增广矩阵的秩,即rank(A)=rank(A, b)(否则为无解)。
非齐次线性方程组有唯一解的充要条件是rank(A)=n。
非齐次线性方程组有无穷多解的充要条件是rank(A)<n。(rank(A)表示A的秩)
非齐次线性方程组解的结构:
非齐次线性方程组的通解=齐次线性方程组的通解+非齐次线性方程组的一个特解(η=ζ+η*)。
齐次线性方程组解法:
非齐次线性方程组Ax=b的求解步骤:
(1)对增广矩阵B施行初等行变换化为行阶梯形。若R(A)<R(B),则方程组无解。
(2)若R(A)=R(B),则进一步将B化为行最简形。
(3)设R(A)=R(B)=r;把行最简形中r个非零行的非0首元所对应的未知数用其余n-r个未知数(自由未知数)表示,并令自由未知数分别等于c1、c2、c3……c(n-r),即可写出含n-r个参数的通解。
参考资料来源:百度百科-非齐次线性方程组
线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题。
因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。
由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。
学术地位:
线性代数在数学、物理学和技术学科中有各种重要应用,因而它在各种代数分支中占居首要地位。在计算机广泛应用的今天,计算机图形学、计算机辅助设计、密码学、虚拟现实等技术无不以线性代数为其理论和算法基础的一部分。
线性代数所体现的几何观念与代数方法之间的联系,从具体概念抽象出来的公理化方法以及严谨的逻辑推证、巧妙的归纳综合等,对于强化人们的数学训练,增益科学智能是非常有用的。
随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,各种实际问题在大多数情况下可以线性化。
在有解的情况下,若增广矩阵的秩小于未知数的个数,则方程组有无数组解,否有唯一解。
有解的充要条件:r(A)=r(A_)
第11题
R(A)=n-m