1加1为什么等于2?
11个回答
展开全部
当年歌德巴赫写信给欧拉,提出这么两条猜想: (1)任何大于2的偶数都能分成两个素数之和 (2)任何大于5的奇数都能分成三个素数之和
很明显,(2)是一的推论 (2)已经被证明,是前苏联著名数学家伊·维诺格拉多夫用“圆法”和他自己创造的“三角和法”证明了充分大的奇数都可表为三个奇素数之和,就是著名的三素数定理。这也是目前为止,歌德巴赫猜想最大的突破。 在歌德巴赫猜想的证明过程中,还提出过这么个命题:每一个充分大的偶数,都可以表为素因子不超过m个与素因子不超过n个的两个数之和。这个命题简记为“m+n” 显然“1+1”正是歌德巴赫猜想的基础命题,“三素数定理”只是一个很重要的推论。 1973年,陈景润改进了“筛法”,证明了“1+2”,就是充分大的偶数,都可表示成两个数之和,其中一个是素数,另一个或者是素数,或者是两个素数的乘积。陈景润的这个证明结果被称为“陈氏定理”是至今为止,歌德巴赫猜想的最高记录.最后要证明的是1+1 给你看一个假设: 用以下的方式界定0,1和2 (eg. qv. Quine, Mathematical Logic, Revised Ed., Ch. 6, §43-44): 0 := {x: x ={y: ~(y = y)}} 1 := {x: y(yεx.&.x\{y}ε0)} 2 := {x: y(yεx.&.x\{y}ε1)} 〔比如说,如果我们从某个属于1这个类的分子拿去一个元素的话,那麽该分子便会变成0的分子。换言之,1就是由所有只有一个元素的类组成的类。〕 现在我们一般采用主要由 von Neumann 引入的方法来界定自然数。例如: 0:= ∧, 1:= {∧} = {0} =0∪{0}, 2:= {∧,{∧}} = {0,1} = 1∪{1} [∧为空集] 一般来说,如果我们已经构作集n, 那麽它的后继元(successor) n* 就界定为n∪{n}。 在一般的集合论公理系统中(如ZFC)中有一条公理保证这个构作过程能不断地延续下去,并且所有由这构作方法得到的集合能构成一个集合,这条公理称为无穷公理(Axiom of Infinity)(当然我们假定了其他一些公理(如并集公理)已经建立。
〔注:无穷公理是一些所谓非逻辑的公理。正是这些公理使得以Russell 为代表的逻辑主义学派的某些主张在最严格的意义下不能实现。〕 跟我们便可应用以下的定理来定义关于自然数的加法。 定理:命"|N"表示由所有自然数构成的集合,那麽我们可以唯一地定义映射A:|Nx|N→|N,使得它满足以下的条件: (1)对于|N中任意的元素x,我们有A(x,0) = x ; (2)对于|N中任意的元素x和y,我们有A(x,y*) = A(x,y)*。 映射A就是我们用来定义加法的映射,我们可以把以上的条件重写如下: (1) x+0 = x ;(2) x+y* = (x+y)*。 现在,我们可以证明"1+1 = 2" 如下: 1+1 = 1+0* (因为 1:= 0*) = (1+0)* (根据条件(2)) = 1* (根据条件(1)) = 2 (因为 2:= 1*) 〔注:严格来说我们要援用递归定理(Recursion Theorem)来保证以上的构作方法是妥当的,在此不赘。] 1+ 1= 2"可以说是人类引入自然数及有关的运算后"自然"得到的结论。但从十九世纪起数学家开始为建基于实数系统的分析学建立严密的逻辑基础后,人们才真正审视关于自然数的基础问题。我相信这方面最"经典"的证明应要算是出现在由Russell和Whitehead合着的"Principia Mathematica"中的那个。
我们可以这样证明"1+1 = 2": 首先,可以推知: αε1 (∑x)(α={x}) βε2 (∑x)(∑y)(β={x,y}.&.~(x=y)) ξε1+1 (∑x)(∑y)(β={x}∪{y}.&.~(x=y)) 所以对于任意的集合γ,我们有 γε1+1 (∑x)(∑y)(γ={x}∪{y}.&.~(x=y)) (∑x)(∑y)(γ={x,y}.&.~(x=y)) γε2 根据集合论的外延公理(Axiom of Extension),我们得到1+1 = 2
很明显,(2)是一的推论 (2)已经被证明,是前苏联著名数学家伊·维诺格拉多夫用“圆法”和他自己创造的“三角和法”证明了充分大的奇数都可表为三个奇素数之和,就是著名的三素数定理。这也是目前为止,歌德巴赫猜想最大的突破。 在歌德巴赫猜想的证明过程中,还提出过这么个命题:每一个充分大的偶数,都可以表为素因子不超过m个与素因子不超过n个的两个数之和。这个命题简记为“m+n” 显然“1+1”正是歌德巴赫猜想的基础命题,“三素数定理”只是一个很重要的推论。 1973年,陈景润改进了“筛法”,证明了“1+2”,就是充分大的偶数,都可表示成两个数之和,其中一个是素数,另一个或者是素数,或者是两个素数的乘积。陈景润的这个证明结果被称为“陈氏定理”是至今为止,歌德巴赫猜想的最高记录.最后要证明的是1+1 给你看一个假设: 用以下的方式界定0,1和2 (eg. qv. Quine, Mathematical Logic, Revised Ed., Ch. 6, §43-44): 0 := {x: x ={y: ~(y = y)}} 1 := {x: y(yεx.&.x\{y}ε0)} 2 := {x: y(yεx.&.x\{y}ε1)} 〔比如说,如果我们从某个属于1这个类的分子拿去一个元素的话,那麽该分子便会变成0的分子。换言之,1就是由所有只有一个元素的类组成的类。〕 现在我们一般采用主要由 von Neumann 引入的方法来界定自然数。例如: 0:= ∧, 1:= {∧} = {0} =0∪{0}, 2:= {∧,{∧}} = {0,1} = 1∪{1} [∧为空集] 一般来说,如果我们已经构作集n, 那麽它的后继元(successor) n* 就界定为n∪{n}。 在一般的集合论公理系统中(如ZFC)中有一条公理保证这个构作过程能不断地延续下去,并且所有由这构作方法得到的集合能构成一个集合,这条公理称为无穷公理(Axiom of Infinity)(当然我们假定了其他一些公理(如并集公理)已经建立。
〔注:无穷公理是一些所谓非逻辑的公理。正是这些公理使得以Russell 为代表的逻辑主义学派的某些主张在最严格的意义下不能实现。〕 跟我们便可应用以下的定理来定义关于自然数的加法。 定理:命"|N"表示由所有自然数构成的集合,那麽我们可以唯一地定义映射A:|Nx|N→|N,使得它满足以下的条件: (1)对于|N中任意的元素x,我们有A(x,0) = x ; (2)对于|N中任意的元素x和y,我们有A(x,y*) = A(x,y)*。 映射A就是我们用来定义加法的映射,我们可以把以上的条件重写如下: (1) x+0 = x ;(2) x+y* = (x+y)*。 现在,我们可以证明"1+1 = 2" 如下: 1+1 = 1+0* (因为 1:= 0*) = (1+0)* (根据条件(2)) = 1* (根据条件(1)) = 2 (因为 2:= 1*) 〔注:严格来说我们要援用递归定理(Recursion Theorem)来保证以上的构作方法是妥当的,在此不赘。] 1+ 1= 2"可以说是人类引入自然数及有关的运算后"自然"得到的结论。但从十九世纪起数学家开始为建基于实数系统的分析学建立严密的逻辑基础后,人们才真正审视关于自然数的基础问题。我相信这方面最"经典"的证明应要算是出现在由Russell和Whitehead合着的"Principia Mathematica"中的那个。
我们可以这样证明"1+1 = 2": 首先,可以推知: αε1 (∑x)(α={x}) βε2 (∑x)(∑y)(β={x,y}.&.~(x=y)) ξε1+1 (∑x)(∑y)(β={x}∪{y}.&.~(x=y)) 所以对于任意的集合γ,我们有 γε1+1 (∑x)(∑y)(γ={x}∪{y}.&.~(x=y)) (∑x)(∑y)(γ={x,y}.&.~(x=y)) γε2 根据集合论的外延公理(Axiom of Extension),我们得到1+1 = 2
展开全部
1+1=2在目前的数学系统中是不能证的,它是一个经验总结的公理,其他一切定理由它推导而得。1931年哥德尔证明:一个包含公理化的算术的系统中无法证明自己的无矛盾性,也就是说任何相容的形式体系无法证明自身相容性…这就说明像算术这种最简单的公理化命题是无法证明也无法否证的。用目前的数学系统去证明1+1=2就好像用1+1=2去证明1+1=2一样,自身是无法证明自身的正确性的。
In my opinion:
根据 陈氏定理 有
6=2+2*2
即有1+2=3(等式两边同时除以2,等式依然成立)
又3=3*1(一个自然数等于它本身乘以1所得乘积)
又3*1=1+1+1(乘法加法等价性)
根据等量代换有
1+2=3=1+1+1
此时有
1+2=1+1+1(等量代换)
两边同时减去一个相同的量 有
1+2-1=1+1+1-1(等式两别同时减去一个相同的正数,等式依然成立)
两边同时消除单位1
则有 2=1+1
此时有2=1+1
所以又1+1=2(等式的对称性原理)
In my opinion:
根据 陈氏定理 有
6=2+2*2
即有1+2=3(等式两边同时除以2,等式依然成立)
又3=3*1(一个自然数等于它本身乘以1所得乘积)
又3*1=1+1+1(乘法加法等价性)
根据等量代换有
1+2=3=1+1+1
此时有
1+2=1+1+1(等量代换)
两边同时减去一个相同的量 有
1+2-1=1+1+1-1(等式两别同时减去一个相同的正数,等式依然成立)
两边同时消除单位1
则有 2=1+1
此时有2=1+1
所以又1+1=2(等式的对称性原理)
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
规矩是人定的,就好像地球为什么叫做地球,太阳为什么叫做太阳。
只是说你首先发明一个东西,或者是发现一个星球是以你的名字为命名一样。
以后大家都遵循这样的规律而已啦,我个人的看法。
只是说你首先发明一个东西,或者是发现一个星球是以你的名字为命名一样。
以后大家都遵循这样的规律而已啦,我个人的看法。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
你能想到这个问题说明你真的很不简单,其实一加一等于二,只是一个人们约定俗成的习惯,人们用这种方式来记录许多关于数量的东西,没有人非得要求一加一等于二。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
你说的这个问题,我在一篇文章上看到过,是国外的。小男孩问老师,为什1+1要=2,而不是5呢。老师走到孩子身边,扯了孩子的耳朵,有点用力了,孩子疼了,就问老师:你问什么扯我的耳朵?老师:我扯的是耳朵吗?男孩:是耳朵,这怎么不是呢?老师这次说:这为什是耳朵,不是眼睛呢?男孩:这不是眼睛,老师你难道这都不认识,分不清吗?老师:耳朵是人们就这么定义的,所以不能叫眼睛。也和这个1+1等于二是一个道理。就这么定义的,这次你明白了。
这也就是楼上说的---约定俗成的意思。
这也就是楼上说的---约定俗成的意思。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |