3个回答
展开全部
又因为|A|=-1,因此特征值肯定有-1(否则的话,所有特征值都是1,其乘积也即行列式|A|=1,而不是-1)
从而A+E必有特征值-1+1=0
则|A+E|=0
或:
|A+E|=|A+AA'|=|A(E+A')|=|A||E+A'|=-|E+A'|=-|A+E|,则|A+E|=0
-|E+A'|=-|A+E|:矩阵的转置的行列式与此矩阵的行列式相等(行列式的性质)
扩展资料:
如将特征值的取值扩展到复数领域,则一个广义特征值有如下形式:Aν=λBν
其中A和B为矩阵。其广义特征值(第二种意义)λ 可以通过求解方程(A-λB)ν=0,得到det(A-λB)=0(其中det即行列式)构成形如A-λB的矩阵的集合。其中特征值中存在的复数项,称为一个“丛(pencil)”。
参考资料来源:百度百科-特征值
展开全部
A显然是正交矩阵,因此特征值只能有1或-1
又因为|A|=-1,因此特征值肯定有-1(否则的话,所有特征值都是1,其乘积也即行列式|A|=1,而不是-1)
从而A+E必有特征值-1+1=0
则|A+E|=0
又因为|A|=-1,因此特征值肯定有-1(否则的话,所有特征值都是1,其乘积也即行列式|A|=1,而不是-1)
从而A+E必有特征值-1+1=0
则|A+E|=0
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
|A+E|=|A+AA'|=|A(E+A')|=|A||E+A'|=-|E+A'|=-|A+E|,则|A+E|=0.
-|E+A'|=-|A+E|:矩阵的转置的行列式与此矩阵的行列式相等(行列式的性质)
-|E+A'|=-|A+E|:矩阵的转置的行列式与此矩阵的行列式相等(行列式的性质)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询