高等数学,证明题,证明如图题目,要求解题过程?

 我来答
匿名用户
2019-12-11
展开全部

  1. 方程可写为x^2-x-1=0,根据韦达定理,α+β=1,α*β=-1

    另外,根据x^2=x+1,两边乘以x^n,有x^(n+2)=x^(n+1)+x^n

    α^(n+2)=α^(n+1)+α^nβ^(n+2)=β^(n+1)+β^n

    n=1时,a1=1,满足

    n=2时,a2=α+β=1,满足

    n=3时,

    (α^3-β^3)/(α-β)

    =[(α^2+a)-(β^2+β)]/(α+β)

    =(α^2-β^2)/(α+β)+(a-β)]/(α+β)

    =a2+a1=a3

    成立

    由数学归纳法,n≥4时也成立

    得证!

  2. 令x^2=x+1较大的解为α,则α=(1+√5)/2,β=(1-√5)/2,-1<β/α<0

    lim an^(1/n)

    =lim [(α^n-β^n)/(α-β)]^(1/n)

    =lim α*{[1-(β/α)^n]/(α-β)}^(1/n)

    =(1+√5)/2

    请点击输入图片描述

    f(x)在[a,b]上有连续的二阶导数

    又f(x)在[a,b]上有三个不同零点c1<c2<c3

    根据中值定理,至少存在2个点有f'(ζ1)=f'(ζ2)=0,c1<ζ1<c2<ζ2<c3;那么也至少存在一个点f''(θ)=0,c1<ζ1<θ<ζ2<c3

    方程在[a,b]上至少有一个实根,等价于至少存在一点,使得f(x)-2f'(x)+f''(x)=0成立

    先写到这,回头再继续

    -------------------分割线------------------------------

    继续

    分析式子,主要是为了构建适当的函数,使用中值定理可以快速得出结论

    f(x)-2f'(x)+f''(x)=0 → f(x)-f'(x)-[f(x)-f'(x)]'=0

    令g(x)=f(x)-f'(x),则有g(x)-g'(x)=0 → g'(x)/g(x)-1=0 → ln[g(x)]+ln[e^(-x)]=0

    找g(x)=f(x)-f'(x)的零点,f'(x)/f(x)-1=0 →ln[f(x)]+ln[e^(-x)]=0 → g(x)=e^(-x)*f(x)

    至此,可以构建函数φ(x)=e^(-x)*f(x);

    φ'(x)=-e^(-x)*f(x)+e^(-x)*f'(x)=-e^(-x)*[f(x)-f'(x)]

    φ''(x)=e^(-x)*[f(x)-f'(x)]-e^(-x)*[f'(x)-f''(x)]=e^(-x)[f(x)-2f'(x)+f''(x)]

    ∵f(c1)=f(c2)=f(c3)=0

    ∴φ(c1)=φ(c1)=φ(c1)=0

    存在θ1∈(c1,c2)和θ2∈(c2,c3),使得φ'(θ1)=φ'(θ2)=0

    那么存在一点η∈(θ1,θ2),有φ'''(η)=0

    即e^(-η)[f(η)-2f'(η)+f''(η)]=0,又e^(-η)>0

    那么f(η)-2f'(η)+f''(η)=0

    完美!

s愤怒的肉肉
2019-12-11 · 贡献了超过200个回答
知道答主
回答量:200
采纳率:0%
帮助的人:14万
展开全部
看不到。。。。。。。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
叶孤春翠4K
2019-12-11 · 贡献了超过1023个回答
知道答主
回答量:1023
采纳率:3%
帮助的人:72.2万
展开全部
高数还是要你自己去试试,不然问问你室友,他们应该会
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
浮沫已平
2019-12-11 · TA获得超过255个赞
知道答主
回答量:4160
采纳率:1%
帮助的人:270万
展开全部
把题目发给我,我可以帮你看看
追问
我发了图的,在下面,应该能看到吧
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式