已知fx在[0,1]上连续,在(0,1)可导,且f0=0 f1=1,

 我来答
帐号已注销
2020-11-23 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:167万
展开全部

^令g(x)=x^3*f(x),则g(x)在[0,1]上连续,在(0,1)内可导

因为g(0)=0,g(1)=f(1)=0,所以根据罗尔定理

存在ξ∈(0,1),使得g'(ξ)=0

3ξ^2*f(ξ)+ξ^3*f'(ξ)=0

3f(ξ)+ξf'(ξ)=0

证毕

例如:

令g(x)=xf(x),0<=x<=1.

那么g(0)=g(1)=0,g'(x)=xf'(x)+f(x).

则根据罗尔定理,存在ξ∈(0,1),使得g'(ξ)=ξf'(ξ)+f(ξ)=0,即f'(ξ)=-f(ξ)/ξ.

扩展资料:

证明:因为函数 f(x) 在闭区间[a,b] 上连续,所以存在最大值与最小值,分别用 M 和 m 表示,分两种情况讨论:

若 M=m,则函数 f(x) 在闭区间 [a,b] 上必为常函数,结论显然成立。

若 M>m,则因为 f(a)=f(b) 使得最大值 M 与最小值 m 至少有一个在 (a,b) 内某点ξ处取得,从而ξ是f(x)的极值点,又条件 f(x) 在开区间 (a,b) 内可导得,f(x) 在 ξ 处取得极值,由费马引理,可导的极值点一定是驻点,推知:f'(ξ)=0。

另证:若 M>m ,不妨设f(ξ)=M,ξ∈(a,b),由可导条件知,f'(ξ+)<=0,f'(ξ-)>=0,又由极限存在定理知左右极限均为 0,得证。

参考资料来源:百度百科-罗尔中值定理

Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
青柠姑娘haha
2019-06-03 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.3万
采纳率:35%
帮助的人:790万
展开全部
令:F(x)=x^2*f(x)
当x=0时,F(0)=0^2*f(0)=0
当x=1时,F(1)=1^2*f(1)=0
而且F(x)在[0,1]内连续,F(x)在(0,1)内可导
故根据Rolle中值定理得:
存在g∈(0,1),使得f'(g)=0
而f'(x)=2xf(x)+x^2*f'(x)
故有:2gf(g)+g^2*f'(g)=0且g∈(0,1)
即得:-2f(g)=g*f'(g)
故:f'(g)=-2f(g)/g
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式