初二数学题,谢谢。急!!
△ABC为等腰三角形,AB=AC,CD⊥AB于D,P为BC上的一点,过P点分别做PE⊥AB,PF⊥AC,垂足分别为E,F,则有PE+PF=CD,为什么...
△ABC为等腰三角形,AB=AC,CD⊥AB于D,P为BC上的一点,过P点分别做PE⊥AB,PF⊥AC,垂足分别为E,F,则有PE+PF=CD,为什么
展开
展开全部
过B点做AC的垂线交于点G,过P点作CD的垂线交于点H
有相似三角形可有
PC:BC=CH:CD
PC:BC=PF:BG
因为CD=BG,则PC:BC=PF:CD
因此CH=PF
而CH+DH=CD,且PE=DH
所以PE+PF=CD
有相似三角形可有
PC:BC=CH:CD
PC:BC=PF:BG
因为CD=BG,则PC:BC=PF:CD
因此CH=PF
而CH+DH=CD,且PE=DH
所以PE+PF=CD
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:
延长ep至点g 使得pf=pg,所以pe+pf=pe+pg=eg。(证明四边形degc为长方形)
由于角b=角c(等腰三角形) 角bep=角pfc=90度, 所以三角形bep相似与三角形pfc
推出角bpe=角cpf
因为角bpe=角cpg
所以角cpf=角cpg pc为公共边 边pf=边pg
所以三角形cpf相似与三角形cpg
推出角g等于角pfc=90度 又因为角ged=角edc=90
所以四边形degc为长方形 eg=边cd 由上可知eg=pf+pe
所以
PE+PF=CD
延长ep至点g 使得pf=pg,所以pe+pf=pe+pg=eg。(证明四边形degc为长方形)
由于角b=角c(等腰三角形) 角bep=角pfc=90度, 所以三角形bep相似与三角形pfc
推出角bpe=角cpf
因为角bpe=角cpg
所以角cpf=角cpg pc为公共边 边pf=边pg
所以三角形cpf相似与三角形cpg
推出角g等于角pfc=90度 又因为角ged=角edc=90
所以四边形degc为长方形 eg=边cd 由上可知eg=pf+pe
所以
PE+PF=CD
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询