
已知x>0,y>0,x+y=1求证(1+1/x)(1+1/y)>=9
2个回答
展开全部
法一:分析法,往证(1+1/x)(1+1/y)>=9
只要证(x+1)(y+1)>=9xy
即证xy+x+y+1>=9xy
因为x+y=1所以只要证8xy<=2
只要证xy<=1/4即可,这可由均值不等式xy<=(1/4)(x+y)^2=1/4得到,
所以不等式成立。
法二:(1+1/x)(1+1/y)=(2+y/x)(2+x/y)=5+2(x/y+y/x)>=5+2*2=9
只要证(x+1)(y+1)>=9xy
即证xy+x+y+1>=9xy
因为x+y=1所以只要证8xy<=2
只要证xy<=1/4即可,这可由均值不等式xy<=(1/4)(x+y)^2=1/4得到,
所以不等式成立。
法二:(1+1/x)(1+1/y)=(2+y/x)(2+x/y)=5+2(x/y+y/x)>=5+2*2=9
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询