求z=ln(e^x+e^y)的各二阶偏导数,详细过程~
展开全部
∂z/∂x=e^x/(e^x+e^y)
∂z/∂y=e^y/(e^x+e^y)
∂²z/∂x²=[e^x(e^x+e^y)-e^xe^x]/(e^x+e^y)²
=e^(x+y)/(e^x+e^y)²
同理:∂²z/∂y²=e^(x+y)/(e^x+e^y)²
∂²z/∂x∂y=-e^xe^y/(e^x+e^y)²
=-e^(x+y)/(e^x+e^y)²
【数学之美】团队为您解答,若有不懂请追问,如果解决问题请点下面的“选为满意答案”。
∂z/∂y=e^y/(e^x+e^y)
∂²z/∂x²=[e^x(e^x+e^y)-e^xe^x]/(e^x+e^y)²
=e^(x+y)/(e^x+e^y)²
同理:∂²z/∂y²=e^(x+y)/(e^x+e^y)²
∂²z/∂x∂y=-e^xe^y/(e^x+e^y)²
=-e^(x+y)/(e^x+e^y)²
【数学之美】团队为您解答,若有不懂请追问,如果解决问题请点下面的“选为满意答案”。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询