
求解高数问题 50
展开全部
∫∫<∑> xzdxdy = ∫∫<Dxy> x(1-x-y)dxdy
= ∫<0, 1>xdx∫<0, 1-x> (1-x-y)dy
= ∫<0, 1>xdx[(1-x)y-y^2/2]<0, 1-x>
= (1/2)∫<0, 1>x[(1-x)^2]dx
= (1/2)∫<0, 1>(x-2x^2+x^3)dx
= (1/2)[x^2/2-2x^3/3+x^4/4]<0, 1> = 1/24
= ∫<0, 1>xdx∫<0, 1-x> (1-x-y)dy
= ∫<0, 1>xdx[(1-x)y-y^2/2]<0, 1-x>
= (1/2)∫<0, 1>x[(1-x)^2]dx
= (1/2)∫<0, 1>(x-2x^2+x^3)dx
= (1/2)[x^2/2-2x^3/3+x^4/4]<0, 1> = 1/24
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询