证明,lim(a^n/n!)=0 n-∞
展开全部
洛必达法则不能用,因为不是连续函数,不可求导。
正确的做法是
由stolz定理
设xn=n,yn=a^n.
lim
xn/yn
=
lim
(xn-x(n-1))/(yn-y(n-1)
=
lim
(n-(n-1))/(a^n-a^(n-1))=
lim
1/((a-1)(a^(n-1))),(n→∞,a>1)。
然后按定义就能做。
1/((a-1)(a^(n-1)))是最基本的要求用定义证明的数列,希望lz能自己完成。
正确的做法是
由stolz定理
设xn=n,yn=a^n.
lim
xn/yn
=
lim
(xn-x(n-1))/(yn-y(n-1)
=
lim
(n-(n-1))/(a^n-a^(n-1))=
lim
1/((a-1)(a^(n-1))),(n→∞,a>1)。
然后按定义就能做。
1/((a-1)(a^(n-1)))是最基本的要求用定义证明的数列,希望lz能自己完成。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询