高中数学题 设椭圆x^2/6+y^2/2=1和双曲线x^2-y^2=1的公共焦点为F1F2,P是两曲线的一个公共点,
则cos角F1PF2的值是_______?(!!过程!!!因为我想看看我是错在哪里了)答案是1/3...
则cos角F1PF2的值是_______?(!!过程!!!因为我想看看我是错在哪里了)
答案是1/3 展开
答案是1/3 展开
3个回答
展开全部
题不对吧,椭圆的焦点是(2,0)(-2,0),而双曲线的焦点是(根2,0)(-根2,0)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
不对吧,椭圆的焦点是(2,0)(-2,0),而双曲线的焦点是(根2,0)(-根2,0)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-01-03
展开全部
a=√6 b=√2
c椭圆=2√2
F1(-√2,0) F2(√2,0)
解方程 (1+y^2)/6+y^2/2=1
1+y^2+3y^2-6=0
4y^2=5
y^2=5/4
y=+-√5/2
x^2/6=3/8
x^2=9/4
x=+-3/2
P(3/2,√5/2)
PF1=(3/2+√2,√5/2)
|PF1|
|PF2|
|F1F2|=2√2
然后用余弦定理
cosF1PF2=[(F1P)^2+(F2P)^2-(F1F2)^2]/(2|F1P||PF2|)
c椭圆=2√2
F1(-√2,0) F2(√2,0)
解方程 (1+y^2)/6+y^2/2=1
1+y^2+3y^2-6=0
4y^2=5
y^2=5/4
y=+-√5/2
x^2/6=3/8
x^2=9/4
x=+-3/2
P(3/2,√5/2)
PF1=(3/2+√2,√5/2)
|PF1|
|PF2|
|F1F2|=2√2
然后用余弦定理
cosF1PF2=[(F1P)^2+(F2P)^2-(F1F2)^2]/(2|F1P||PF2|)
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询