证明两个偶函数的和是偶函数,两个奇函数的和是奇函数

 我来答
合奕琛树妍
2019-05-31 · TA获得超过3.5万个赞
知道大有可为答主
回答量:1.4万
采纳率:27%
帮助的人:717万
展开全部
1、巳知f(x),g(x)都是偶函数,求证p(x)=f(x)+g(x)是偶函数
证明:来因为:自f(x),g(x)都是偶函数zd
所以:f(-x)=f(x),g(-x)=g(x)
所以:p(-x)=f(-x)+g(-x)=f(x)+g(x)=p(x)
所以:p(x)是偶函数
2、巳知f(x),g(x)都是奇函数,求证p(x)=f(x)+g(x)是奇函数
证明:因为:f(x),g(x)都是奇函数
所以:f(-x)=-f(x),g(-x)=-g(x)
所以:p(-x)=f(-x)+g(-x)=-f(x)+-g(x)=-p(x)
所以:p(x)是奇函数
宝淑兰竭碧
2019-04-16 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.2万
采纳率:28%
帮助的人:1043万
展开全部
1、设f(x),g(x)是偶函数,则F(X)=f(x)+g(x),F(-X)=f(-x)+g(-x)=f(x)+g(x)=F(X)
所以F(X)=F(-X),所以F(X)是偶函数
2、设f(x),g(x)是奇函数,同理可证。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
诗若谷督辛
2020-01-06 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.4万
采纳率:30%
帮助的人:779万
展开全部
设f(x1)和f(x2)是偶函数,f(x3)和f(x4)是奇函数
那么根据性质可以得出结论:
f(-x1)=f(x1)
f(-x2)=f(x2)
f(-x3)=-f(x3)
f(-x4)=-f(x4)
所以f(-x1)+f(-x2)=f(x1)+f(x2)
f(-x3)+f(-x4)=-f(x3)-f(x4)=-(f(x3)+f(x4))
同时成立,故得出结论。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式