复变函数求留数Res(sin1/z,0)的值,速度求

 我来答
撒合英兰昭
2019-04-04 · TA获得超过3.8万个赞
知道大有可为答主
回答量:1.4万
采纳率:34%
帮助的人:932万
展开全部
z=-1
是该函数的二级极点,根据书上枯宏的M级极点的留数公式,Res(f(z),-1)=z趋近于没消册-1时(z+1)^2*f(z)对z的一阶导数,结果是-(1/Z^2)cos(1/z)在z=-1时的取桥圆值,答案是-COS1.。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
化振英胥夏
2019-06-17 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.2万
采纳率:34%
帮助的人:843万
展开全部
留数是洛朗展式中-1次方项的系缓码桐数
1、sin(1/z)=1/z
-
1/(3!z³)
+
...
+
(-1)^n/[(2n+1)!z^(2n+1)]+...
若n为奇数,则z^n与上式相乘后没有1/z这模戚一项,扰坦因此留数为0
若n为偶数,则z^n与上式相乘后1/z这一项的系数为:(-1)^(n/2)/(n+1)!
2、不知你写的是sin(z/(z-1)),还是sin(z/(z+1)),我按z-1算
孤立奇点为z=1
sin(z/(z-1))=sin(1+1/(z-1))=sin1cos(1/(z-1))+sin(1/(z-1))cos1
cos(1/(z-1))展式中没有1/(z-1)这一项,
sin(1/(z-1))=1/(z-1)
-
(1/3!)(1/(z-1)²)
+
....
因此sin(1/(z-1))的展式中1/(z-1)系数为1,再乘以cos1,因此本题留数为cos1
希望可以帮到你,不明白可以追问,如果解决了问题,请点下面的"选为满意回答"按钮,谢谢。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
冰然0虫子
2022-10-12
知道答主
回答量:31
采纳率:100%
帮助的人:9921
展开全部
z=0是本性奇点
Res(sin 1/ z,0)=1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式