已知各项均为正数的数列{an}的前n项和Sn满足S1>1,且6Sn=(an+1)...
已知各项均为正数的数列{an}的前n项和Sn满足S1>1,且6Sn=(an+1)(an+2),n∈N*.(I)求数列{an}的通项公式;(II)设数列{bn}满足an(2...
已知各项均为正数的数列{an}的前n项和Sn满足S1>1,且6Sn=(an+1)(an+2),n∈N*. (I)求数列{an}的通项公式; (II)设数列{bn}满足an(2bn-1)=1,记Tn为数列{bn}的前n项和.求证:2Tn+1<log2(an+3)
展开
展开全部
(I)解:n=1时,6a1=a12+3a1+2,且a1>1,解得a1=2.
n≥2时,6Sn=an2+3an+2,6Sn-1=an-12+3an-1+2,两式相减得(an+an-1)(an-an-1-3)=0,
∵an+an-1>0,
∴an-an-1=3,
∴{an}为等差数列,
∵a1=2,
∴an=3n-1.
(II)证明:∵数列{bn}满足an(2bn-1)=1,
∴bn=log23n3n-1
∴Tn=b1+b2+…+bn=log2(32×65×…×3n3n-1)
要证2Tn+1<log2(an+3),即证2log2(32×65×…×3n3n-1)+1<log2(an+3)
即证(32×65×…×3n3n-1)2<3n+22
即证2(32×65×…×3n3n-1)23n+2<1
令cn=2(32×65×…×3n3n-1)23n+2,
∴cn+1cn=9n2+18n+99n2+21n+10<1
∵cn>0,∴cn+1<cn,
∴{cn}是单调递减数列
∴cn≤c1=2×(32)23×1+2=910<1
∴cn=2(32×65×…×3n3n-1)23n+2<1
故2Tn+1<log2(an+3).
n≥2时,6Sn=an2+3an+2,6Sn-1=an-12+3an-1+2,两式相减得(an+an-1)(an-an-1-3)=0,
∵an+an-1>0,
∴an-an-1=3,
∴{an}为等差数列,
∵a1=2,
∴an=3n-1.
(II)证明:∵数列{bn}满足an(2bn-1)=1,
∴bn=log23n3n-1
∴Tn=b1+b2+…+bn=log2(32×65×…×3n3n-1)
要证2Tn+1<log2(an+3),即证2log2(32×65×…×3n3n-1)+1<log2(an+3)
即证(32×65×…×3n3n-1)2<3n+22
即证2(32×65×…×3n3n-1)23n+2<1
令cn=2(32×65×…×3n3n-1)23n+2,
∴cn+1cn=9n2+18n+99n2+21n+10<1
∵cn>0,∴cn+1<cn,
∴{cn}是单调递减数列
∴cn≤c1=2×(32)23×1+2=910<1
∴cn=2(32×65×…×3n3n-1)23n+2<1
故2Tn+1<log2(an+3).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询