在ΔABC中,角A.B.C所对的边分别为a,b,c已知asinB/2+bsinA/2=c/2.
在ΔABC中,角A.B.C所对的边分别为a,b,c已知asinB/2+bsinA/2=c/2.(1)求证:a,c,成等差数列;(2)若a-b=4,ΔABC的最大内角为12...
在ΔABC中,角A.B.C所对的边分别为a,b,c已知asinB/2+bsinA/2=c/2. (1)求证:a,c,成等差数列; (2)若a-b=4,ΔABC的最大内角为120°,求ΔABC的面积.
展开
1个回答
展开全部
证明:
(1)
已知asin²(B/2)+bsin²(A/2)=c/2
∵cosB
=
1-2
sin²(B/2)
∴sin²(B/2)=(1-
cosB)/2
同理,
cosA
=
1-2
sin²(A/2)
∴sin²(A/2
=(1-
cosA)/2
∴asin²(B/2)+bsin²(A/2)=
c/2
→a×(1-
cosB)/2+b×(1-
cosA)/2
=
c/2
→a-a×cosB
+b-b×cosA
=
c
a+b-c
=
a×cosB+
b×cosA
根据余弦定理,可得
cosB
=
(a2
+
c2
-
b2)
/
(2·a·c)
cosA
=
(c2
+
b2
-
a2)
/
(2bc)
代入到a+b-c
=
a×cosB+
b×cosA,得
a+b-c
=
a×[(a2
+
c2
-
b2)
/
(2·a·c)]+
b×[(c2
+
b2
-
a2)
/
(2bc)]
=(
a2
+
c2
-
b2+c2
+
b2
-
a2)/2c
=
2
c2/2c
=c
a+b-c
=
c
→
a+b
=
2c
∴
a,b,c成等差数列
(2)
(2)
∵a-b=4,可知,在△ABC中,a是∠A所对的边最大,
根据三角形中,大边对大角,
∴∠A=120°,∵a-b=4
∴b=a-4,
2c
=
a+b
=
a
+
a-4
=2a
-4
∴c=a-2;
代入余弦公式:
a²=b²+c²-2bc·cosA
=
(a-4)²+(a-2)²-2×(a-4)
×(a-2)×cos120°
整理化简得a²-9a+14
=0
解得a
=7
,a=
2
,当a
=
2时,由c=a-2
=
0
,无意义,
∴
a
=7
b=a-4
=
7-4=3
c
c=a-2
=7
-2
=5
b
=
3
,c
=5
根据三角形的面积公式
S△ABC
=(1/2)×b×c×sinA
=(1/2)
×3×7×sin120°
=
(21/4)√3
∴S△ABC
=(21/4)√3
(1)
已知asin²(B/2)+bsin²(A/2)=c/2
∵cosB
=
1-2
sin²(B/2)
∴sin²(B/2)=(1-
cosB)/2
同理,
cosA
=
1-2
sin²(A/2)
∴sin²(A/2
=(1-
cosA)/2
∴asin²(B/2)+bsin²(A/2)=
c/2
→a×(1-
cosB)/2+b×(1-
cosA)/2
=
c/2
→a-a×cosB
+b-b×cosA
=
c
a+b-c
=
a×cosB+
b×cosA
根据余弦定理,可得
cosB
=
(a2
+
c2
-
b2)
/
(2·a·c)
cosA
=
(c2
+
b2
-
a2)
/
(2bc)
代入到a+b-c
=
a×cosB+
b×cosA,得
a+b-c
=
a×[(a2
+
c2
-
b2)
/
(2·a·c)]+
b×[(c2
+
b2
-
a2)
/
(2bc)]
=(
a2
+
c2
-
b2+c2
+
b2
-
a2)/2c
=
2
c2/2c
=c
a+b-c
=
c
→
a+b
=
2c
∴
a,b,c成等差数列
(2)
(2)
∵a-b=4,可知,在△ABC中,a是∠A所对的边最大,
根据三角形中,大边对大角,
∴∠A=120°,∵a-b=4
∴b=a-4,
2c
=
a+b
=
a
+
a-4
=2a
-4
∴c=a-2;
代入余弦公式:
a²=b²+c²-2bc·cosA
=
(a-4)²+(a-2)²-2×(a-4)
×(a-2)×cos120°
整理化简得a²-9a+14
=0
解得a
=7
,a=
2
,当a
=
2时,由c=a-2
=
0
,无意义,
∴
a
=7
b=a-4
=
7-4=3
c
c=a-2
=7
-2
=5
b
=
3
,c
=5
根据三角形的面积公式
S△ABC
=(1/2)×b×c×sinA
=(1/2)
×3×7×sin120°
=
(21/4)√3
∴S△ABC
=(21/4)√3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询