1个回答
展开全部
详细过程是,①由Dxy的区域,确定了x、y的变化区间分别是x∈[0,1]、y∈[0,(1-x)/2]。
②直线z+x+2y=1由平面z=0穿入Ω内,∴z≥0。又,z+x+2y=1,∴z=1-x-2y。∴z∈[0,1-x-2y]。
③,对∫(0,1-x-2y)xdz,“x”为常数,∴∫(0,1-x-2y)xdz=x∫(0,1-x-2y)dz=x(1-x-2y)。
④,接下来,对y积分,“x”仍然视作常数。原式=∫(0,1)xdx∫(0,1/2-x/2)(1-x-2y)dy。而,∫(0,1/2-x/2)(1-x-2y)dy=[(1-x)y-y²]丨(y=0,1/2-x/2/)=(1-x)²/4。
∴原式=∫(0,1)x(1-x)²dx/4=(1/4)∫(0,1)(x-2x²+x³)dx=…=1/48。
供参考。
②直线z+x+2y=1由平面z=0穿入Ω内,∴z≥0。又,z+x+2y=1,∴z=1-x-2y。∴z∈[0,1-x-2y]。
③,对∫(0,1-x-2y)xdz,“x”为常数,∴∫(0,1-x-2y)xdz=x∫(0,1-x-2y)dz=x(1-x-2y)。
④,接下来,对y积分,“x”仍然视作常数。原式=∫(0,1)xdx∫(0,1/2-x/2)(1-x-2y)dy。而,∫(0,1/2-x/2)(1-x-2y)dy=[(1-x)y-y²]丨(y=0,1/2-x/2/)=(1-x)²/4。
∴原式=∫(0,1)x(1-x)²dx/4=(1/4)∫(0,1)(x-2x²+x³)dx=…=1/48。
供参考。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询