计算曲线积分i=∫lydx+zdy+xdz,其中l是从点(2,0,0)

第二型曲线积分问题∫Lydx+zdy+xdz,其中L是x+y=2与x^2+y^2+z^2=2(x+y)的交线,从原点看去是顺时针方向答案是-2√2π,可我算出来却是2,... 第二型曲线积分问题
∫L ydx+zdy+xdz,其中L是x+y=2与x^2+y^2+z^2=2(x+y)的交线,从原点看去是顺时针方向
答案是-2√2π,可我算出来却是2,
展开
 我来答
斐青鄂安晏
2019-04-30 · TA获得超过1246个赞
知道小有建树答主
回答量:1375
采纳率:88%
帮助的人:5.9万
展开全部
设S是平面x+y=2被x^2+y^2+z^2=2(x+y)截得的部分,取上侧,则S的单位法向量
n=(cosα,cosβ,cosγ)=(1/√2,1/√2,0),由斯托克斯公式,原积分=-∫∫dxdy+dydz+dzdx=
-∫∫(cosα+cosβ+cosγ)dS=-2/√2∫∫dS,由于所截曲线为球面x^2+y^2+z^2=4与x+y=2的交线,可求得其圆周半径为√2,所以∫∫dS=2π,原积分=-2√2π
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式