高一数学函数奇偶性都有哪些经常考的知识点如下:
奇偶函数运算:
两个偶函数相加所得的和为偶函数、两个奇函数相加所得的和为奇函数、一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数、两个偶函数相乘所得的积为偶函数、两个奇函数相乘所得的积为偶函数、一个偶函数与一个奇函数相乘所得的积为奇函数。
函数的定义:
如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
函数奇偶性作为高中数学函数性质中非常重要的性质之一,具有较强的规律性,其在高考中出题形式比较灵活,可以单独命题考查函数奇偶性的判断利用奇偶性求参数、求解析式;也可以与函数的单调性、周期性、对称性、函数图像、不等式等问题进行融合,命制一些综合性比较强的内容。
选择题的函数奇偶性考查方式,多是给一个复杂函数的解析式,然后根据函数解析式,综合考虑函数具有的奇偶性、单调性、特殊点、值域等来判断ABCD四个选项中哪个选项是它的大致图象。
有时选择题和填空题也会给出一个奇(偶)函数在定义域的一个子区间上的解析式,然后求其对称区间上的解析式。下面具体来介绍函数奇偶性的相关知识。
函数奇偶性,指的是一个函数自身的对称性。如果一个函数自身的图象关于原点对称(即以原点为其对称中心),则这个函数就称为奇函数;如果一个函数自身的图象关于y轴对称(即以y轴为其图象的一条对称轴),则这个函数就称为偶函数。下面具体来介绍函数奇偶性的相关知识。
函数的奇偶性的定义:对于函数f(x),如果对于函数定义域内的任意一个x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函数f(x)就叫做奇函数(或偶函数). 正确理解奇函数和偶函数的定义,要注意...
2.
奇偶函数的定义是判断函数奇偶性的主要依据。为了便于判断函数的奇偶性,有时需要将函数化简或应用定义的等价形式: 注意如下结论的运用...
3.
有关奇偶性的几个性质及结论 (1)一个函数为奇函数的充要条件是它的图象关于原点对称
一般地,对于函数f(x)
(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
2.奇偶函数图像的特征
定理奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。
f(x)为奇函数《==》f(x)的图像关于原点对称
点(x,y)→(-x,-y)
3.奇偶函数运算
(1).两个偶函数相加所得的和为偶函数.
(2).两个奇函数相加所得的和为奇函数.
(3).一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数.
(4).两个偶函数相乘所得的积为偶函数.
(5).两个奇函数相乘所得的积为偶函数.
(6).一个偶函数与一个奇函数相乘所得的积为奇函数.更多知识点可关注下 新 东 方的 高考数学系列课程。