导函数连续原函数连续吗?

 我来答
社会风土民情
高粉答主

2021-10-08 · 醉心答题,欢迎关注
知道小有建树答主
回答量:3570
采纳率:100%
帮助的人:89.5万
展开全部

是的。

无论什么样的函数,只要存在原函数,则原函数一定是可导函数,因此一定是连续的。分段函数的话就分段积分得到的原函数也是分段的。

原函数是指对于一个定义在某区间的已知函数f(x),如果存在可导函数F(x),使得在该区间内的任一点都存在dF(x)=f(x)dx,则在该区间内就称函数F(x)为函数f(x)的原函数。

若函数f(x)在某区间上连续,则f(x)在该区间内必存在原函数,这是一个充分而不必要条件,也称为“原函数存在定理”。

原函数存在定理

若函数f(x)在某区间上连续,则f(x)在该区间内必存在原函数,这是一个充分而不必要条件,也称为“原函数存在定理”。

函数族F(x)+C(C为任一个常数)中的任一个函数一定是f(x)的原函数。

故若函数f(x)有原函数,那么其原函数为无穷多个。

例如:x3是3x2的一个原函数,易知,x3+1和x3+2也都是3x2的原函数。因此,一个函数如果有一个原函数,就有许许多多原函数,原函数概念是为解决求导和微分的逆运算而提出来的。

例如:已知作直线运动的物体在任一时刻t的速度为v=v(t),要求它的运动规律 ,就是求v=v(t)的原函数。原函数的存在问题是微积分学的基本理论问题,当f(x)为连续函数时,其原函数一定存在。

小蛮子的人文历史观

2021-12-05 · 喜欢人文历史,希望能和同道中人互相交流
小蛮子的人文历史观
采纳数:1258 获赞数:3183

向TA提问 私信TA
展开全部
是的。
无论什么样的函数,只要存在原函数,则原函数一定是可导函数,因此一定是连续的。分段函数的话就分段积分得到的原函数也是分段的。
原函数是指对于一个定义在某区间的已知函数f(x),如果存在可导函数F(x),使得在该区间内的任一点都存在dF(x)=f(x)dx,则在该区间内就称函数F(x)为函数f(x)的原函数。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
一个人郭芮
高粉答主

2021-12-13 · GR专注于各种数学解题
一个人郭芮
采纳数:37941 获赞数:84690

向TA提问 私信TA
展开全部
只要在某一点函数是可导的
那么该点的函数肯定连续
也就是说可导是连续的充分条件
现在都得到了条件
导函数是连续的
于是原函数当然就是连续的
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
42温柔汤圆

2021-12-14 · TA获得超过918个赞
知道小有建树答主
回答量:7480
采纳率:41%
帮助的人:442万
展开全部
首先 你需要明确这是 一元函数f(x)的情况 因为他的导函数都连续了 说明可导 而一个函数可导必连续 所以原函数连续
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
tllau38
高粉答主

2021-12-10 · 关注我不会让你失望
知道顶级答主
回答量:8.7万
采纳率:73%
帮助的人:2亿
展开全部
函数可导 => 函数连续
导函数连续当然可以推导出函数连续
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式