函数怎么学?从什么地方开始学?

 我来答
萌萌的爱新觉罗
2021-02-15 · TA获得超过3589个赞
知道大有可为答主
回答量:2万
采纳率:64%
帮助的人:565万
展开全部
最简单的函数学习方法 学习函数一定要多加练习,熟悉基本的知识点,才能做更难得数学函数题。 一、定义与定义式: 自变量x和因变量y有如下关系: y=kx+b 则此时称y是x的一次函数。 特别地,当b=0时,y是x的正比例函数。即:y=kx (k为常数,k≠0) 二、一次函数的性质: 1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b (k为任意不为零的实数 b取任何实数) 2.当x=0时,b为函数在y轴上的截距。 三、一次函数的图像及性质: 1.作法与图形:通过如下3个步骤 (1)列表; (2)描点; (3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点) 2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。 3.k,b与函数图像所在象限: 当k>0时,直线必通过一、三象限,y随x的增大而增大; 当k<0时,直线必通过二、四象限,y随x的增大而减小。 当b>0时,直线必通过一、二象限; 当b=0时,直线通过原点 当b<0时,直线必通过三、四象限。 特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。 四、确定一次函数的表达式: 已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。 (1)设一次函数的表达式(也叫解析式)为y=kx+b。 (2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b …… ① 和 y2=kx2+b …… ② (3)解这个二元一次方程,得到k,b的值。 (4)最后得到一次函数的表达式。 五、一次函数在生活中的应用: 1.当时间t一定,距离s是速度v的一次函数。s=vt。 2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。 六、常用公式: 1.求函数图像的k值:(y1-y2)/(x1-x2) 2.求与x轴平行线段的中点:|x1-x2|/2 3.求与y轴平行线段的中点:|y1-y2|/2 4.求任意线段的长:√(x1-x2)^2+(y1-y2)^2 (注:根号下(x1-x2)与(y1-y2)的平方和) 怎样才能学好数学函数 认真思考,用函数的观点看方程有了前面积累的比较扎实的基本功,第三阶段要好好动动脑子了,思考:函数和方程到底有什么关系? 这可以先从一次函数来入手分析。考虑:一次函数和方程,,之间的关系?当然,这要从函数图象上来分析,一次函数图象是条直线,它是由无数个点组成的,也就是存在无数个数对(x,y)。 我们知道,对于自变量的每一个值,y都有唯一确定的值与之对应。同样不难发现:对于y的每一个值(例如上面的0,2),自变量也有唯一的值与它对应,这个值实际上也就是方程,的解。 也可理解为求直线与直线(x轴),或与直线交点的横坐标。对于方程则可以理解为当自变量为何值时两条直线与它们的y值一样,也就是求两条直线交点的横坐标。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式