cos^2x积分是什么?
∫(cosx)^2dx=x/2 + sin2x /4+c,c为积分常数。
过程如下:
y=(cosx)^2
=(1+cos2x)/2
对其积分:
∫(cosx)^2dx
=∫(1+cos2x)/2dx
= 1/2 ∫(1+cos2x)dx
= 1/2 〔 x + 1/2 sin2x 〕
= x/2 + sin2x /4+c
扩展资料:
对于一个函数f,如果在闭区间[a,b]上,无论怎样进行取样分割,只要它的子区间长度最大值足够小,函数f的黎曼和都会趋向于一个确定的值S,那么f在闭区间[a,b]上的黎曼积分存在,并且定义为黎曼和的极限S。
对于黎曼可积的函数,新积分的定义不应当与之冲突。勒贝格积分就是这样的一种积分。 黎曼积分对初等函数和分段连续的函数定义了积分的概念,勒贝格积分则将积分的定义推广到测度空间里。
cos^2x积分是x/2 + sin2x /4+c。
y=(cosx)^2
=(1+cos2x)/2
对其积分:
∫(cosx)^2dx
=∫(1+cos2x)/2dx
= 1/2 ∫(1+cos2x)dx
= 1/2 〔 x + 1/2 sin2x 〕
= x/2 + sin2x /4+c
所以cos^2x积分是x/2 + sin2x /4+c。
扩展资料:
分部积分法两个原则
1、交换位置之后的积分容易求出。
经验顺序:对,反,幂,三,指谁在后面就把谁凑到微分的后面去,比如,如果被积函数有指数函数,就优先把指数凑到微分的后面去,如果没有就考虑把三角函数凑到后面去,在考虑幂函数。
2、相对来说,谁易凑到微分后面,就凑谁。需要注意的是经验顺序不是绝对的,而是一个笼统的顺序,掌握两大原则更重要。