二重积分中值定理怎么证明?

 我来答
杨老师秒懂课堂
高能答主

2021-04-13 · 分享生活酸甜苦辣咸,喜怒哀乐。
杨老师秒懂课堂
采纳数:875 获赞数:110709

向TA提问 私信TA
展开全部

二重积分的中值定理,设f(x,y)在有界闭区域D上连续, 

 是D的面积,则在D内至少存在一点  ,使得

定理证明

设  (x)在  上连续,且最大值为  ,最小值为  ,最大值和最小值可相等。

由估值定理可得  

同除以(b-a)从而连续函数的介值定理可知,必定  ,使得  ,即:命题得证。

扩展资料:

积分中值定理在应用中所起到的重要作用是可以使积分号去掉,或者使复杂的被积函数化为相对简单的被积函数,从而使问题简化。

因此,对于证明有关题设中含有某个函数积分的等式或不等式,或者要证的结论中含有定积分,或者所求的极限式中含有定积分时,一般应考虑使用积分中值定理, 去掉积分号,或者化简被积函数。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式