数域的定义:设P是由一些复数组成的集合,其中包括0与1,如果P中任意两个数的和、差、积、商(除数不为0)仍是P中的数,则称P为一个数域。
常见数域:复数域C;实数域R;有理数域Q。
例子
数域因为其定义过于广泛,没有太好的性质,在数学中的直接应用很少,经常用到的是它的一些子对象,例如:
代数数域,即有理数域的有限扩张,例如有理数域和高斯域。
阿基米德局部域,实数域和复数域,它们是代数数域关于通常的绝对值做完备化得到的域。
分圆域,它是有理数域的射线类域(ray class field),即所有的有限阿贝尔扩张均包含在某个分圆域中。它也是代数数域,扩张次数是的欧拉函数。