正交矩阵一定可逆吗?
展开全部
正交矩阵一定可逆。
根据可逆矩阵的定义:矩阵A为档模n阶方阵,若存在n阶矩阵B,使得矩阵A、B的乘积为单位阵,则称A为可逆阵,B为A的逆矩阵。而根据正交野蠢野矩阵的定义:如果AAT=E(E为单位矩阵,AT表示“矩阵A的转置矩阵”)或ATA=E,则n阶实矩阵A称为正交矩阵 。
因此,正交矩阵一定是可逆的。在矩阵论中,实数正交矩阵是方块矩阵Q,它的转置矩阵是它的逆矩阵。因此“正交矩阵一定是可逆的”的说法是正确的。
正交矩阵的特点如下:
1、实数方块矩阵是正交的,当且仅当它的列形成了带有普通欧几里得点积的欧几里得空间R的正交规范基,它为真当且仅当它的行形成R的正交基。
2、任何正交矩阵的行列式是+1或−1。这可从关于行列式的如下基本事实得出:(注:反过来不是真的;有+1行列式不保证正交性,即使带有正交列,可由下列反例证实。)
3、对于置换矩阵,行列式是+1还是−1匹配置换是偶还是奇的标志,行列式是行的交替函数。
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
用初等变换将矩阵化成阶梯型矩阵,看最后一行是否全为0,如果最后一行全为0 则原矩阵不可逆;如果不存在全0行,则原矩阵可逆。用初等行变化求矩阵的逆矩阵的时候,即用行变换把矩阵(A,zhiE)化成(E,B)的形dao式,那么B就等于A的逆在这里...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询