正交矩阵一定可逆吗?

 我来答
小熊生活百科
高能答主

2021-12-02 · 小熊帮你解决生活中的各种问题
小熊生活百科
采纳数:332 获赞数:50272

向TA提问 私信TA
展开全部

正交矩阵一定可逆。

根据可逆矩阵的定义:矩阵A为档模n阶方阵,若存在n阶矩阵B,使得矩阵A、B的乘积为单位阵,则称A为可逆阵,B为A的逆矩阵。而根据正交野蠢野矩阵的定义:如果AAT=E(E为单位矩阵,AT表示“矩阵A的转置矩阵”)或ATA=E,则n阶实矩阵A称为正交矩阵 。

因此,正交矩阵一定是可逆的。在矩阵论中,实数正交矩阵是方块矩阵Q,它的转置矩阵是它的逆矩阵。因此“正交矩阵一定是可逆的”的说法是正确的。

正交矩阵的特点如下:

1、实数方块矩阵是正交的,当且仅当它的列形成了带有普通欧几里得点积的欧几里得空间R的正交规范基,它为真当且仅当它的行形成R的正交基。

2、任何正交矩阵的行列式是+1或−1。这可从关于行列式的如下基本事实得出:(注:反过来不是真的;有+1行列式不保证正交性,即使带有正交列,可由下列反例证实。)

3、对于置换矩阵,行列式是+1还是−1匹配置换是偶还是奇的标志,行列式是行的交替函数。

4、比行列式限制更强的是正交矩阵总可以是在复数上可对角化来展示特征值的完全的集合,它们全都颂喊必须有(复数)绝对值1。

富港检测技术(东莞)有限公司_
2024-04-02 广告
用初等变换将矩阵化成阶梯型矩阵,看最后一行是否全为0,如果最后一行全为0 则原矩阵不可逆;如果不存在全0行,则原矩阵可逆。用初等行变化求矩阵的逆矩阵的时候,即用行变换把矩阵(A,zhiE)化成(E,B)的形dao式,那么B就等于A的逆在这里... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式