复杂网络 --- 社会网络分析

 我来答
青柠姑娘17
2022-07-02 · TA获得超过1.2万个赞
知道大有可为答主
回答量:6468
采纳率:100%
帮助的人:36.3万
展开全部

“社会网络”指的是社会成员及其相互关系的集合。社会网络中所说的“点”是各个社会成员,而社会网络中的“边”指的是成员之间的各种社会关系。成员间的关系可以是有向的,也可以是无向的。同时,社会关系可以表现为多种形式,如人与人之间的朋友关系、上下级关系、科研合作关系等,组织成员之间的沟通关系,国家之间的贸易关系等。社会网络分析(Social Network Analysis)就是要对社会网络中行为者之间的关系进行量化研究,是社会网络理论中的一个具体工具。

因此,社会网络分析关注的焦点是关系和关系的模式,采用的方式和方法从概念上有别于传统的统计分析和数据处理方法。

社会网络通常表达人类的个体通过各种关系连接起来,比如朋友、婚姻、商业等,这些连接宏观上呈现出一定的模式。很早的时候,一些社会学家开始关注人们交往的模式。Ebel等进行了一个电子邮件版的小世界问题的实验,完成了Kiel大学的5000个学生的112天电子邮件连接数据,节点为电子邮件地址,连接为消息的传递,得到带指数截断的幂律度分布,指数为r=1.18。同时证明,该网络是小世界的,平均分隔为4.94。

社会网络分析,可以解决或可以尝试解决下列问题:

“中心性”是社会网络分析的重点之一,用于分析个人或组织在其社会网络中具有怎样的权力,或者说居于怎样的中心地位,这一思想是社会网络分析者最早探讨的内容之一。

点度中心度表示与该点直接相连的点的个数,无向图为(n-1),有向图为(入度,出度)。

个体的中心度(Centrality)测量个体处于网络中心的程度,反映了该点在网络中的重要性程度。网络中每个个体都有一个中心度,刻画了个体特性。除了计算网络中个体的中心度外,还可以计算整个网络的集中趋势(可简称为中心势,Centralization)。网络中心势刻画的是整个网络中各个点的差异性程度,一个网络只有一个中心势。

根据计算方法的不同,中心度和中心势都可以分为3种:点度中心度/点度中心势、中间中心度/中间中心势、接近中心度/接近中心势。

在一个社会网络中,如果一个个体与其他个体之间存在大量的直接联系,那么该个体就居于中心地位,在该网络中拥有较大的“权力”。在这种思想的指导下,网络中一个点的点度中心性就可以用网络中与该点之间有联系的点的数目来衡量,这就是点度中心度。

网络中心势指的是网络中点的集中趋势,其计算依据如下步骤:首先找到图中的最大点度中心度的数值,然后计算该值与任何其他点的中心度的差值,再计算这些“差值”的总和,最后用这个总和除以各个“差值”总和的最大可能值。

在网络中,如果一个个体位于许多其他两个个体之间的路径上,可以认为该个体居于重要地位,因为他具有控制其他两个个体之间的交往能力,这种特性用中间中心度描述,它测量的是个体对资源控制的程度。一个个体在网络中占据这样的位置越多,代表它具有很高的中间中心性,就有越多的个体需要通过它才能发生联系。

中间中心势定义为网络中 中间中心性最高的节点的中间中心性与其他节点的中间中心性的差距,用于分析网络整体结构。中间中心势越高,表示该网络中的节点可能分为多个小团体,而且过于依赖某一个节点传递关系,说明该节点在网络中处于极其重要的地位。

接近中心性用来描述网络中的个体不受他人“控制”的能力。在计算接近中心度的时候,我们关注的是捷径,而不是直接关系。如果一个点通过比较短的路径与许多其他点相连,我们就说该点具有较高的接近中心性。

对一个社会网络来说,接近中心势越高,表明网络中节点的差异性越大;反之,则表明网络中节点间的差异越小。

注:以上公式都是针对无向图,如果是有向图则根据定义相应修改公式即可

当网络中某些个体之间的关系特别紧密,以至于结合成一个次级团体时,这样的团体在社会网络分析中被称为凝聚子群。分析网络中存在多少个这样的子群,子群内部成员之间关系的特点,子群之间关系特点,一个子群的成员与另一个子群成员之间的关系特点等就是凝聚子群分析。

由于凝聚子群成员之间的关系十分紧密,因此有的学者也将凝聚子群分析形象地称为“小团体分析”或“社区现象”。

常用的社区检测方法主要有如下几种:

(1)基于图分割的方法,如Kernighan-Lin算法,谱平分法等;

(2)基于层次聚类的方法,如GN算法、Newman快速算法等;

(3)基于模块度优化的方法,如贪婪算法、模拟退火算法、Memetic算法、PSO算法、进化多目标优化算法等。

凝聚子群密度(External-Internallndex,E-IIndex)主要用来衡量一个大的网络中小团体现象是否十分严重,在分析组织管理等问题时非常有效。

最差的情形是大团体很散漫,核心小团体却有高度内聚力。另外一种情况是,大团体中有许多内聚力很高的小团体,很可能就会出现小团体间相互斗争的现象。凝聚子群密度的取值范围为[-1,+1]。该值越向1靠近,意味着派系林立的程度越大;该值越接近-1,意味着派系林立的程度越小;该值越接近0,表明关系越趋向于随机分布,未出现派系林立的情形。

E-I Index可以说是企业管理者的一个重要的危机指数。当一个企业的E-I Index过高时,就表示该企业中的小团体有可能结合紧密而开始图谋小团体私利,从而伤害到整个企业的利益。其实E-I Index不仅仅可以应用到企业管理领域,也可以应用到其他领域,比如用来研究某一学科领域学者之间的关系。如果该网络存在凝聚子群,并且凝聚子群的密度较高,说明处于这个凝聚子群内部的这部分学者之间联系紧密,在信息分享和科研合作方面交往频繁,而处于子群外部的成员则不能得到足够的信息和科研合作机会。从一定程度上来说,这种情况也是不利于该学科领域发展的。

核心-边缘(Core-Periphery)结构分析的目的是研究社会网络中哪些节点处于核心地位,哪些节点处于边缘地位。核心-边缘结构分析具有较广的应用性,可用于分析精英网络、论文引用关系网络以及组织关系网络等多种社会现象。

根据关系数据的类型(定类数据和定比数据),核心—边缘结构有不同的形式。定类数据和定比数据是统计学中的基本概念,一般来说,定类数据是用类别来表示的,通常用数字表示这些类别,但是这些数值不能用来进行数学计算;定比数据是用数值来表示的,可以用来进行数学计算。如果数据是定类数据,可以构建离散的核心-边缘模型;如果数据是定比数据,可以构建连续的核心-边缘模型。

离散的核心-边缘模型,根据核心成员和边缘成员之间关系的有无及紧密程度,又可分为3种:核心-边缘全关联模型、核心-边缘局部关联模型、核心-边缘关系缺失模型。如果把核心和边缘之间的关系看成是缺失值,就构成了核心-边缘关系缺失模型。

这里介绍适用于定类数据的4种离散的核心-边缘模型:

参考

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
久谦平台
2024-12-03 广告
在当前的数字化时代,移动硬盘作为一种重要的数据存储和传输工具,其市场需求持续增长。消费者在选择移动硬盘时,通常会考虑容量大小、传输速度、品牌信誉、产品耐用性和价格等因素。从心理层面来看,数据安全性是消费者最关心的问题之一,他们倾向于选择那些... 点击进入详情页
本回答由久谦平台提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式