指数函数比较大小
指数函数比较大小方法:比差(商)法;函数单调性法;中间值法。要比较A与B的大小,先找一个中间值C,再比较A与C、B与C的大小,由不等式的传递性得到A与B之间的大小,这是中间值法。
比较大小常用方法
(1)做差(商)法:A-B大于0即A大于B A-B等于0即A=B A-B小于0即A小于B 步骤:做差—变形—定号—下结论 ;A\B大于1即A大于B A\B等于1即A等于B A/B小于1即A小于B(A,B大于0)
(2)函数单调性法;
(3)中间值法:要比较A与B的大小,先找一个中间值C,再比较A与C、B与C的大小,由不等式的传递性得到A与B之间的大小。
注意事项
比较两个幂的大小时,除了上述一般方法之外,还应注意:
(1)对于底数相同,指数不同的两个幂的大小比较,可以利用指数函数的单调性来判断。
(2)对于底数不同,指数相同的两个幂的大小比较,可以利用指数函数图像的变化规律来判断。
(3)对于底数不同,且指数也不同的幂的大小比较,则可以利用中间值来比较。
指数函数如何比大小
可以根据图像判断:当底都大于1时,底较大的那个图像陡一些,此时,在第一象限即x>0时,底大的函数值大;在第三象限即x<0时,底小的函数值大;x=0时,函数值都为1.底大于1时函数是增函数。当底都小于1时,底较小的那个图像陡些,此时,在第二象限即x<0时,底小的函数值大;在第四象限即x>0时,底较大的函数值大;x=0时,函数值都为1。底小于1时函数是减函数。