大数据云计算好不好学习?
5个回答
2021-12-04 · 学动漫、设计、电竞、电商、短视频、软件等
关注
展开全部
首先,任何的知识和技术,如果不认真开始学习,都是困难的。然后,大数据课程难度大,有本科学历要求!云计算相对简单,但也需要大专学历!
大数据学习内容主要有:
①JavaSE核心技术;
②Hadoop平台核心技术、Hive开发、HBase开发;
③Spark相关技术、Scala基本编程;
④掌握Python基本使用、核心库的使用、Python爬虫、简单数据分析;理解Python机器学习;
⑤大数据项目开发实战,大数据系统管理优化等。
你可以考察对比一下南京课工场、北大青鸟、中博软件学院等开设有大数据专业的学校。祝你学有所成,望采纳。
云计算学习主要内容有:
①网络基础与linux系统的管理;
②优化及高可用技能;
③虚拟化与云平台技术;
④开发运维。
云计算大数据难不难学习,这取决于你的态度和学习方式。众所周知,云计算涵盖了计算机系统、计算机网络、并行计算、分布式计算和网格计算等各种技术。如果你是零基础接触云计算,想要自学云计算将寸步难行。如果你是拥有一定的知识基础,自学可以在一定程度上提高技术能力,但学习的过程非常煎熬且不一定有效果。如果你是参加专业的云计算学习,却不付诸努力,那也是白白浪费好的资源和自己的大好时光。因此在学习云计算之前你一定要做好下列准备:
1、积极的学习态度。学习绝对不是一蹴而就的事,如果你想学好云计算,那就要有长期作战的准备,要始终保持积极地学习劲头。
2、耐心、信心和恒心。在学习的过程中你总会遇到难题不知如何解决,这个时候一定不要灰心消极,你应该明白任何错误的出现都是为了成就更好的自己。现在所犯的小错误是为了未来不再犯错误,只有耐心对待每一个错误、相信自己可以、坚持学习,你才能成功。
3、选择好的专业机构。成功其实没有所谓的捷径,参加云计算机构算是你学好技术的快车道,可以让你免于埋头苦读、免于在一个问题上钻死胡同,有良师以及专业课程引路,你的云计算学习之路将走得更加顺畅。
大数据学习内容主要有:
①JavaSE核心技术;
②Hadoop平台核心技术、Hive开发、HBase开发;
③Spark相关技术、Scala基本编程;
④掌握Python基本使用、核心库的使用、Python爬虫、简单数据分析;理解Python机器学习;
⑤大数据项目开发实战,大数据系统管理优化等。
你可以考察对比一下南京课工场、北大青鸟、中博软件学院等开设有大数据专业的学校。祝你学有所成,望采纳。
云计算学习主要内容有:
①网络基础与linux系统的管理;
②优化及高可用技能;
③虚拟化与云平台技术;
④开发运维。
云计算大数据难不难学习,这取决于你的态度和学习方式。众所周知,云计算涵盖了计算机系统、计算机网络、并行计算、分布式计算和网格计算等各种技术。如果你是零基础接触云计算,想要自学云计算将寸步难行。如果你是拥有一定的知识基础,自学可以在一定程度上提高技术能力,但学习的过程非常煎熬且不一定有效果。如果你是参加专业的云计算学习,却不付诸努力,那也是白白浪费好的资源和自己的大好时光。因此在学习云计算之前你一定要做好下列准备:
1、积极的学习态度。学习绝对不是一蹴而就的事,如果你想学好云计算,那就要有长期作战的准备,要始终保持积极地学习劲头。
2、耐心、信心和恒心。在学习的过程中你总会遇到难题不知如何解决,这个时候一定不要灰心消极,你应该明白任何错误的出现都是为了成就更好的自己。现在所犯的小错误是为了未来不再犯错误,只有耐心对待每一个错误、相信自己可以、坚持学习,你才能成功。
3、选择好的专业机构。成功其实没有所谓的捷径,参加云计算机构算是你学好技术的快车道,可以让你免于埋头苦读、免于在一个问题上钻死胡同,有良师以及专业课程引路,你的云计算学习之路将走得更加顺畅。
展开全部
大数据云计算专业学习起来还是比较不错的,专业性很强,所以想要学得更好,最好建议可以系统性的进行学习,多跟专业的老师沟通学习,掌握更多学习的方法和技巧,才能达到理想的效果。
平时想要多跟老师进行专业的沟通学习,需要注意以下几步。
1、学会倾听。更多的倾听会让自己接受到更多容易忽略的信息,什么时候该说,什么时候多说,最好是多听少说,这样能减少自己犯错的几率,还能使自己显得更有内涵和深度。
2、谦虚的态度。说话的遣词造句应把自己放在谦虚的角度,不能太自信,更不能自大,不然随时会影响工作中的人际关系和工作效率。遇到事情最好与他人多商讨,不要一意孤行。
3、言简意赅。表达想法和思路应该言简意赅,简洁有效的叙述能更好的完成工作的沟通,这是工作能力的表现,准确的表达能够减少一半以上的工作时间。
4、学习幽默。幽默能够拉近自己和他人的关系,也能化解很多矛盾,当工作沟通产生理解上的偏差时,幽默能够改变尴尬的气氛,是职场中必须掌握的一种技巧。
5、多使用赞美。多赞美他人,才可以显示自己的魄力。赞美别人的优点,会获得别人的尊重,同时也让自己更有学习的动力。
平时想要多跟老师进行专业的沟通学习,需要注意以下几步。
1、学会倾听。更多的倾听会让自己接受到更多容易忽略的信息,什么时候该说,什么时候多说,最好是多听少说,这样能减少自己犯错的几率,还能使自己显得更有内涵和深度。
2、谦虚的态度。说话的遣词造句应把自己放在谦虚的角度,不能太自信,更不能自大,不然随时会影响工作中的人际关系和工作效率。遇到事情最好与他人多商讨,不要一意孤行。
3、言简意赅。表达想法和思路应该言简意赅,简洁有效的叙述能更好的完成工作的沟通,这是工作能力的表现,准确的表达能够减少一半以上的工作时间。
4、学习幽默。幽默能够拉近自己和他人的关系,也能化解很多矛盾,当工作沟通产生理解上的偏差时,幽默能够改变尴尬的气氛,是职场中必须掌握的一种技巧。
5、多使用赞美。多赞美他人,才可以显示自己的魄力。赞美别人的优点,会获得别人的尊重,同时也让自己更有学习的动力。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
大数据和云计算从理论角度来看,二者属于不同层次的事情,云计算研究的是计算问题,大数据研究的是巨量数据处理问题,而巨量数据处理依然属于计算问题的研究范围,因此,从这个角度来看,大数据是云计算的一个子领域,从应用角度来看,大数据是云计算的应用案例之一,云计算是大数据的实现工具之一。
大数据与云计算既有不同又有联系,但在现实中,由于大数据处理时为了获得良好的效率和质量,常常采用云计算技术,因此,大数据与云计算便常常同时出现于人们的眼前,从而造成了人们的困惑。
大数据技术是一种新一代技术和构架,它以成本较低、以快速的采集、处理和分析技术,从各种超大规模的数据中提取价值。大数据技术不断涌现和发展,让我们处理海量数据更加容易、更加便宜和迅速,成为利用数据的好助手,甚至可以改变许多行业的商业模式。
大数据(big data)是这样的数据集合:数据量增长速度极快,用常规的数据工具无法在一定的时间内进行采集、处理、存储和计算的数据集合。云计算是一种基于因特网的超级计算模式,在远程的数据中心里,成千上万台电脑和服务器连接成一片电脑云。因此,云计算甚至可以让你体验每秒10万亿次的运算能力,拥有这么强大的计算能力可以模拟核爆炸、预测气候变化和市场发展趋势。用户通过电脑、笔记本、手机等方式接入数据中心,按自己的需求进行运算。
云计算的就业前途,某种意义上也可以理解为云计算为我们提供的服务,存在一定的必然性,也就是说云计算对于社会、云计算使用者有哪些优势,也同时可以理解为,云计算的优势就是云计算的就业优势。
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。
随着云时代的来临,大数据(Big data)也吸引了越来越多的关注。分析师团队认为,大数据(Big data)通常用来形容一个公司创造的大量非结构化数据和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapReduce一样的框架来向数十、数百或甚至数千的电脑分配工作。
大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。大数据和云计算是未来发展趋势所需,且功能足够强大,这样的行业你说前景好不好呢?当然是好啊,所以抓紧学习才是正确的开始。
大数据与云计算既有不同又有联系,但在现实中,由于大数据处理时为了获得良好的效率和质量,常常采用云计算技术,因此,大数据与云计算便常常同时出现于人们的眼前,从而造成了人们的困惑。
大数据技术是一种新一代技术和构架,它以成本较低、以快速的采集、处理和分析技术,从各种超大规模的数据中提取价值。大数据技术不断涌现和发展,让我们处理海量数据更加容易、更加便宜和迅速,成为利用数据的好助手,甚至可以改变许多行业的商业模式。
大数据(big data)是这样的数据集合:数据量增长速度极快,用常规的数据工具无法在一定的时间内进行采集、处理、存储和计算的数据集合。云计算是一种基于因特网的超级计算模式,在远程的数据中心里,成千上万台电脑和服务器连接成一片电脑云。因此,云计算甚至可以让你体验每秒10万亿次的运算能力,拥有这么强大的计算能力可以模拟核爆炸、预测气候变化和市场发展趋势。用户通过电脑、笔记本、手机等方式接入数据中心,按自己的需求进行运算。
云计算的就业前途,某种意义上也可以理解为云计算为我们提供的服务,存在一定的必然性,也就是说云计算对于社会、云计算使用者有哪些优势,也同时可以理解为,云计算的优势就是云计算的就业优势。
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。
随着云时代的来临,大数据(Big data)也吸引了越来越多的关注。分析师团队认为,大数据(Big data)通常用来形容一个公司创造的大量非结构化数据和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapReduce一样的框架来向数十、数百或甚至数千的电脑分配工作。
大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。大数据和云计算是未来发展趋势所需,且功能足够强大,这样的行业你说前景好不好呢?当然是好啊,所以抓紧学习才是正确的开始。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2021-12-04
展开全部
首先,大数据和云计算在技术体系结构上有非常紧密的联系,二者都是以分布式存储和分布式计算为基础,只不过云计算专注于服务,而大数据则更注重数据的价值化,在应用端二者的区别还是比较明显的。
对于初学者来说,选择学习云计算还是大数据,应该结合自身的知识基础进行选择,虽然云计算和大数据对于人才类型的需求都比较多元化,但是云计算从业者主要的就业岗位往往集中在IT互联网行业,而大数据的从业领域会更广泛一些,在工业互联网的推动下,未来大量的传统行业也需要大数据人才。
从学习的难易程度上来看,云计算和大数据都有很多学习切入点,不同知识基础的人都能够找到适合自己的学习切入点,所以入门并不会特别困难。从大的层面来看,云计算对于计算机网络、操作系统和开发能力的要求会比较高,需要初学者具有一定的动手实践能力,而学习大数据则需要具有一定的数学基础,数学基础对于在大数据领域发展具有比较重要的作用。
从就业的角度来看,当前云计算和大数据领域的就业岗位都比较多,由于云计算的就业岗位主要集中在IT互联网行业,所以云计算的岗位往往具有比较高的岗位附加值,但是对于从业者的要求也相对比较高。相对于云计算来说,大数据领域有不少岗位的就业门槛还是比较低的,入门也比较容易,比如数据清洗、数据呈现等岗位对于从业者的要求就相对比较低。
最后,不论是选择学习云计算还是大数据,一定要重视行业知识的学习,未来云计算和大数据的行业应用会释放出大量的就业机会。
我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。
如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以在评论区留言,或者私信我!
对于初学者来说,选择学习云计算还是大数据,应该结合自身的知识基础进行选择,虽然云计算和大数据对于人才类型的需求都比较多元化,但是云计算从业者主要的就业岗位往往集中在IT互联网行业,而大数据的从业领域会更广泛一些,在工业互联网的推动下,未来大量的传统行业也需要大数据人才。
从学习的难易程度上来看,云计算和大数据都有很多学习切入点,不同知识基础的人都能够找到适合自己的学习切入点,所以入门并不会特别困难。从大的层面来看,云计算对于计算机网络、操作系统和开发能力的要求会比较高,需要初学者具有一定的动手实践能力,而学习大数据则需要具有一定的数学基础,数学基础对于在大数据领域发展具有比较重要的作用。
从就业的角度来看,当前云计算和大数据领域的就业岗位都比较多,由于云计算的就业岗位主要集中在IT互联网行业,所以云计算的岗位往往具有比较高的岗位附加值,但是对于从业者的要求也相对比较高。相对于云计算来说,大数据领域有不少岗位的就业门槛还是比较低的,入门也比较容易,比如数据清洗、数据呈现等岗位对于从业者的要求就相对比较低。
最后,不论是选择学习云计算还是大数据,一定要重视行业知识的学习,未来云计算和大数据的行业应用会释放出大量的就业机会。
我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。
如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以在评论区留言,或者私信我!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2021-12-04
展开全部
云计算的关键词在于“整合”,无论你是通过现在已经很成熟的传统的虚拟机切分型技术,还是通过google后来所使用的海量节点聚合型技术,他都是通过将海量的服务器资源通过网络进行整合,调度分配给用户,从而解决用户因为存储计算资源不足所带来的问题。
大数据正是因为数据的爆发式增长带来的一个新的课题内容,如何存储如今互联网时代所产生的海量数据,如何有效的利用分析这些数据等等。
他俩之间的关系你可以这样来理解,云计算技术就是一个容器,大数据正是存放在这个容器中的水,大数据是要依靠云计算技术来进行存储和计算的。扩展资料:
云计算常与网格计算、效用计算、自主计算相混淆。
网格计算:分布式计算的一种,由一群松散耦合的计算机组成的一个超级虚拟计算机,常用来执行一些大型任务;
效用计算:IT资源的一种打包和计费方式,比如按照计算、存储分别计量费用,像传统的电力等公共设施一样;
自主计算:具有自我管理功能的计算机系统。
事实上,许多云计算部署依赖于计算机集群(但与网格的组成、体系结构、目的、工作方式大相径庭),也吸收了自主计算和效用计算的特点。
被普遍接受的云计算特点如下:
(1) 超大规模
“云”具有相当的规模,Google云计算已经拥有100多万台服务器, Amazon、IBM、微软、Yahoo等的“云”均拥有几十万台服务器。企业私有云一般拥有数百上千台服务器。“云”能赋予用户前所未有的计算能力。
(2) 虚拟化
云计算支持用户在任意位置、使用各种终端获取应用服务。所请求的资源来自“云”,而不是固定的有形的实体。应用在“云”中某处运行,但实际上用户无需了解、也不用担心应用运行的具体位置。只需要一台笔记本或者一个手机,就可以通过网络服务来实现我们需要的一切,甚至包括超级计算这样的任务。
(3) 高可靠性
“云”使用了数据多副本容错、计算节点同构可互换等措施来保障服务的高可靠性,使用云计算比使用本地计算机可靠。
(4) 通用性
云计算不针对特定的应用,在“云”的支撑下可以构造出千变万化的应用,同一个“云”可以同时支撑不同的应用运行。
(5) 高可扩展性
“云”的规模可以动态伸缩,满足应用和用户规模增长的需要。
(6) 按需服务
“云”是一个庞大的资源池,你按需购买;云可以像自来水,电,煤气那样计费。
大数据特征:
1 容量(Volume):数据的大小决定所考虑的数据的价值和潜在的信息;
2 种类(Variety):数据类型的多样性;
3 速度(Velocity):指获得数据的速度;
4 可变性(Variability):妨碍了处理和有效地管理数据的过程。
5 真实性(Veracity):数据的质量
6 复杂性(Complexity):数据量巨大,来源多渠道
7 价值(value):合理运用大数据,以低成本创造高价值
想要系统的认知大数据,必须要全面而细致的分解它,着手从三个层面来展开:
第一层面是理论,理论是认知的必经途径,也是被广泛认同和传播的基线。在这里从大数据的特征定义理解行业对大数据的整体描绘和定性;从对大数据价值的探讨来深入解析大数据的珍贵所在;洞悉大数据的发展趋势;从大数据隐私这个特别而重要的视角审视人和数据之间的长久博弈。
第二层面是技术,技术是大数据价值体现的手段和前进的基石。在这里分别从云计算、分布式处理技术、存储技术和感知技术的发展来说明大数据从采集、处理、存储到形成结果的整个过程。
第三层面是实践,实践是大数据的最终价值体现。在这里分别从互联网的大数据,政府的大数据,企业的大数据和个人的大数据四个方面来描绘大数据已经展现的美好景象及即将实现的蓝图。
大数据正是因为数据的爆发式增长带来的一个新的课题内容,如何存储如今互联网时代所产生的海量数据,如何有效的利用分析这些数据等等。
他俩之间的关系你可以这样来理解,云计算技术就是一个容器,大数据正是存放在这个容器中的水,大数据是要依靠云计算技术来进行存储和计算的。扩展资料:
云计算常与网格计算、效用计算、自主计算相混淆。
网格计算:分布式计算的一种,由一群松散耦合的计算机组成的一个超级虚拟计算机,常用来执行一些大型任务;
效用计算:IT资源的一种打包和计费方式,比如按照计算、存储分别计量费用,像传统的电力等公共设施一样;
自主计算:具有自我管理功能的计算机系统。
事实上,许多云计算部署依赖于计算机集群(但与网格的组成、体系结构、目的、工作方式大相径庭),也吸收了自主计算和效用计算的特点。
被普遍接受的云计算特点如下:
(1) 超大规模
“云”具有相当的规模,Google云计算已经拥有100多万台服务器, Amazon、IBM、微软、Yahoo等的“云”均拥有几十万台服务器。企业私有云一般拥有数百上千台服务器。“云”能赋予用户前所未有的计算能力。
(2) 虚拟化
云计算支持用户在任意位置、使用各种终端获取应用服务。所请求的资源来自“云”,而不是固定的有形的实体。应用在“云”中某处运行,但实际上用户无需了解、也不用担心应用运行的具体位置。只需要一台笔记本或者一个手机,就可以通过网络服务来实现我们需要的一切,甚至包括超级计算这样的任务。
(3) 高可靠性
“云”使用了数据多副本容错、计算节点同构可互换等措施来保障服务的高可靠性,使用云计算比使用本地计算机可靠。
(4) 通用性
云计算不针对特定的应用,在“云”的支撑下可以构造出千变万化的应用,同一个“云”可以同时支撑不同的应用运行。
(5) 高可扩展性
“云”的规模可以动态伸缩,满足应用和用户规模增长的需要。
(6) 按需服务
“云”是一个庞大的资源池,你按需购买;云可以像自来水,电,煤气那样计费。
大数据特征:
1 容量(Volume):数据的大小决定所考虑的数据的价值和潜在的信息;
2 种类(Variety):数据类型的多样性;
3 速度(Velocity):指获得数据的速度;
4 可变性(Variability):妨碍了处理和有效地管理数据的过程。
5 真实性(Veracity):数据的质量
6 复杂性(Complexity):数据量巨大,来源多渠道
7 价值(value):合理运用大数据,以低成本创造高价值
想要系统的认知大数据,必须要全面而细致的分解它,着手从三个层面来展开:
第一层面是理论,理论是认知的必经途径,也是被广泛认同和传播的基线。在这里从大数据的特征定义理解行业对大数据的整体描绘和定性;从对大数据价值的探讨来深入解析大数据的珍贵所在;洞悉大数据的发展趋势;从大数据隐私这个特别而重要的视角审视人和数据之间的长久博弈。
第二层面是技术,技术是大数据价值体现的手段和前进的基石。在这里分别从云计算、分布式处理技术、存储技术和感知技术的发展来说明大数据从采集、处理、存储到形成结果的整个过程。
第三层面是实践,实践是大数据的最终价值体现。在这里分别从互联网的大数据,政府的大数据,企业的大数据和个人的大数据四个方面来描绘大数据已经展现的美好景象及即将实现的蓝图。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询