求函数f(x)=cos^2x+2√3sinxcosx-sin^2x的周期和单调区间
1个回答
展开全部
f(x)=cos^2x+2√3sinxcosx-sin^2x
=cos^2x-sin^2x+2√3sinxcosx
=cos2x+2√3sinxcosx
=cos2x+√3sin2x
=2[(1/2)*cos2x+(√3/2)*sin2x]
=2*sin(2x+π/6)
=2*sin[2(x+π/12)]
周期为2π/2=π
单调区间为:
[kπ-π/3,kπ+π/6)上单调增;
[kπ+π/6,kπ+2π/3)上单调减.
=cos^2x-sin^2x+2√3sinxcosx
=cos2x+2√3sinxcosx
=cos2x+√3sin2x
=2[(1/2)*cos2x+(√3/2)*sin2x]
=2*sin(2x+π/6)
=2*sin[2(x+π/12)]
周期为2π/2=π
单调区间为:
[kπ-π/3,kπ+π/6)上单调增;
[kπ+π/6,kπ+2π/3)上单调减.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询