如何证明基本不等式
展开全部
基本不等式公式都包含:
对于正数a、b.
A=(a+b)/2,叫做a、b的算术平均数
G=√(ab),叫做a、b的几何平均数
S=√[(a^2+b^2)/2],叫做a、b的平方平均数
H=2/(1/a+1/b)=2ab/(a+b)叫做调和平均数
不等关系:H=<G=<A=<S.其中G=<A是基本的
基本不等式:又称柯西不等式,是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。但从历史的角度讲,该不等式应当称为Cauchy-Buniakowsky-Schwarz不等式,因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。 柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。 柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用。
二维形式:
(a^2+b^2+c^2)*(1+1+1)>=(a+b+c)^2=1 (柯西不等式) 所(a^2+b^2+c^2)>=1/3 (1式) 又a^3+b^3+c^3=(a^3+b^3+c^...(平方的和的乘积不小于乘积的和的平方)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2022-08-13
展开全部
(a-b)^2≥0
a^2+b^2≥2ab
令x=a^2,y=b^2
得x+y≥2√ab
a^2+b^2≥2ab
令x=a^2,y=b^2
得x+y≥2√ab
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询