一个班共60人,有42人会游泳、46人会骑车、50人会溜冰、55人会乒乓,问至少有多少人四项都会?
某班有60人,其中42人会游泳,46人会骑车,50人会溜冰,55人会打乒乓球。可以肯定至少有13人四项都会。
某班有60人,其中42人会游泳,46人会骑车,50人会溜冰,55人会打乒乓球。要求至少有多少人四项都会,其中42<46<50<55,因此取42为基准进行计算。
60-46=14人,也就是说有14人不会骑车。
60-50=10,也就是说有10人不会溜冰。
60-55=5,也就是说有5人不会打乒乓球。
假定上面14人不会骑车、10人不会溜冰、5人不会打乒乓球的人都会其他运动且不会游泳,则42-14-10-5=13,也就是说至少有13人四项都会。
扩展资料
设S为待分类元素组成的集合,G为一正则集合,则S相对于G的成员分类函数为:
C(S,G)={SinG,SoutG,SonG},(3-2-1)
其中,
SinG=S∩iG,
SoutG=S∩cG,
SonG=S∩bG,
如果S是形体的表面,G是一正则形体,则定义S相对于G的分类函数时,需考虑S的法向量。记-S为S的反向面。形体表面S上一点P相对于外侧的法向量为NP(S),相反方向的法向量为-NP(S),则(3-2-1)式中SonG可分为两种情况:
SonG={Sshared(bG),Sshared(-bG)},
其中,
Sshared(bG)={P|P∈S,P∈bG,NP(S)=NP(bG)},
Sshared(-bG)={P|P∈S,P∈bG,NP(S)=-NP(bG)}。
于是,S相对于G的分类函数C(S,G)可写为:
C(S,G)={SinG,SoutG,Sshared(bG),Sshared(-bG)}。