1/2+(1/4+3/4)+(1/6+3/6+5/6)+……+(1/100+3/100+5/100+……+99/100)=
1/2+(1/4+3/4)+(1/6+3/6+5/6)+……+(1/100+3/100+5/100+……+99/100)=
1/2=1/2;
1/4+3/4=(2²)/(2×2)=2/2;
1/6+3/6+5/6=9/6=(3²)/[2×3]=3/2;
1/8+3/8+5/8+7/8=16/8=(4²)/[2×4]=4/2;
1/10+3/10+5/10+7/10+9/10=25/10=(5²)/[2×5]=5/2;
1/12+3/12+5/12+7/12+9/12+11/12=36/12=(6²)/[2×6]=6/6;
1/14+3/14+5/14+7/14+9/13+11/14+13/14=47/14=(7²)/[2×7]=7/2;
1/16+3/16+5/16+7/16+9/16+11/16+13/16+15/16=64/16=(8²)/[2×8]=8/2;
……
这样你可明白??答案:1275/2。
1/2+(1/4+3/4)+(1/6+3/6+5/6)+.+(1/98+3/98+.+97/98)=?
an = [1+3+...+(2n-1)]/(2n)
=n/2
Sn = a1+a2+...+an
= (n+1)n/4
1/2+(1/4+3/4)+(1/6+3/6+5/6)+…+(1/98+3/98+…+97/98)
=S98
=99(98)/4
=4851/2
1/2+(1/4+3/4)+(1/6+3/6+5/6)+.+(1/98+3/98+.+97/98)
=1/2+1+1.5+......+24.5
=25×49
=1250
请问有帮到你吗,我需要下载文件,要财富值,请采纳,谢谢。
1/2+(1/4+3/4)+(1/6+3/6+5/6)+(1/8+3/8+5/8+7/8)+...+(1/96+3/96+...+95/96)+(1/98+3/98+5/98+...+97/98)
=1/2+(1/2)*2+(1/2)*3+(1/2)*4+...+(1/2)*48+(1/2)*49
=1/2(1+2+3+4+...+48+49)
=1/2*(1+49)*49/2
=612.5
1/2+(1/4+3/4)+(1/6+3/6+5/6)+······+(1/98+3/98+···+97/98)=?
解:
1/2+(1/4+3/4)+(1/6+3/6+5/6)……+(1/98+3/98+……+97/98)
=1/2+1+3/2+2+5/2+...+49/2
=(1/2)*(1+2+3+...+49)
=(1/2)*(1+49)*49/2
=1225/2
计算:1/2+(1/4+3/4)+(1/6+3/6+5/6)+.+(1/98+3/98+.+97/98).
1/2+(1/4+3/4)+(1/6+3/6+5/6)……+(1/98+3/98+……+97/98)
=1/2+1+3/2+2+5/2+...+49/2
=(1/2)*(1+2+3+...+49)
=(1/2)*(1+49)*49/2
=1225/2.
计算1/2+(1/4+2/4+3/4)+(1/6+/2/6+3/6+4/6+5/6)+``````+(1/2010+2/2012+`````2009/2010)
通项an=(1+2+3+……+2n-1)/(2n)
=[(2n-1)(1+2n-1)/2]/(2n)=(2n-1)/2=n-(1/2)
a1=1/2,a(n+1)-an=1
{an}是首项为1/2,公差为1的等差数列
所求的式子是{an}的前1005项的和
记为S1005=1005*(1/2+1005-1/2)/2
=1005*1005/2=505012.5