高中导数公式
展开全部
高中导数公式
求导是数学计算中的一个计算方法,它的定义就是,当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。
一阶导数表示的是函数的变化率,最直观的表现就在于函数的单调性,定理:设f(x)在[a,b]上连续,在(a,b)内具有一阶导数,那么:
(1)若在(a,b)内f'(x)>0,则f(x)在[a,b]上的图形单调递增;
(2)若在(a,b)内f’(x)<0,则f(x)在[a,b]上的图形单调递减;
(3)若在(a,b)内f'(x)=0,则f(x)在[a,b]上的图形是槐穗平行(或重合)于x轴的链宴直线,即在[a,b]上为常数。
函数的导数就是一点上的切线的斜率。当函数单调递增时,斜率为正,函数单调递减时,斜率为负。
导数与微分:微棚明银分也是一种线性描述函数在一点附近变化的方式。微分和导数是两个不同的概念。但是,对一元函数来说,可微与可导是完全等价的。
可微的函数,其微分等于导数乘以自变量的微分dx,换句话说,函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。函数y=f(x)的微分又可记作dy=f'(x)dx。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询