能利用拉格朗日中值定理证明的不等式通常具有一定的形式,比如不等式中含有明显形如“f(a)-f(b)”的部分(设a>b),其中f(x)是某个我们熟悉的函数。这时根据拉格朗日中值定理将f(a)-f(b)写为f'(ξ)(a-b)的形式,再根据b<ξ<a估计f'(ξ)的范围,一般也就完成了证明。
拉格朗日中值定理又称拉氏定理,是罗尔中值定理的推广,同时也是柯西中值定理的特殊情形。如果函数f(x)在(a,b)上可导,[a,b]上连续,则必有一ξ∈(a,b),使得f'(ξ)*(b-a)=f(b)-f(a)f(x)在(a,b)上可导,[a,b]上连续是拉格朗日中值定理成立的充分条件。