什么是代数
代数是研究数、数量、关系、结构与代数方程(组)的通用解法及其性质的数学分支。
初等代数一般在中学时讲授,介绍代数的基本思想:研究当我们对数字作加法或乘法时会发生什么,以及了解变量的概念和如何建立多项式并找出它们的根。
代数的研究对象不仅是数字,而是各种抽象化的结构。在其中我们只关心各种关系及其性质,而对于“数本身是什么”这样的问题并不关心。常见的代数结构类型有群、环、域、模、线性空间等。
代数是数学的一个分支。传统的代数用有字符 (变量) 的表达式进行算术运算,字符代表未知数或未定数。
如果不包括除法 (用整数除除外),则每一个表达式都是一个含有理系数的多项式。例如: 1/2 xy +1/4z-3x+2/3. 一个代数方程式 (参见EQUATION)是通过使多项式等于零来表示对变量所加的条件。
如果只有一个变量,那么满足这一方程式的将是一定数量的实数或复数——它的根。一个代数数是某一方程式的根。代数数的理论——伽罗瓦理论是数学中最令人满意的分支之一。建立这个理论的伽罗瓦(Evariste Galois,1811-32)在21岁时死于决斗中。
他证明了不可能有解五次方程的代数公式。用他的方法也证明了用直尺和圆规不能解决某些著名的几何问题(立方加倍,三等分一个角)。多于一个变量的代数方程理论属于代数几何学,抽象代数学处理广义的数学结构,它们与算术运算有类似之处。
参见,如: 布尔代数(BOOLEAN ALGEBRA);群 (GRO-UPS);矩阵(MATRICES);四元数(QUA-TERNIONS );向量(VECTORS)。
这些结构以公理 (见公理法 AXIOMATICMETHOD) 为特征。特别重要的是结合律和交换律。代数方法使问题的求解简化为符号表达式的操作,已渗入数学的各分支。
2024-12-15 广告