互斥事件的概率计算公式
互斥事件的概率计算公式是:事件A与事件B在任何一次试验中不会同时发生,若A与B互斥,则P(A+B)=P(A)+P(B)且P(A)+P(B)≤1,若a是A的对立事件则P(A)=1-P(a)。
互斥事件定义中事件A与事件B不可能同时发生是指若事件A发生,事件B就不发生或者事件B发生,事件A就不发生。如粉笔盒里有3支红粉笔,2支绿粉笔,1支黄粉笔,现从中任取1支,记事件A为取得红粉笔,记事件B为取得绿粉笔,则A与B不能同时发生,即A与B是互斥事件。
互斥事件是指事件A和B的交集为空,也叫互不相容事件。也可叙述为:不可能同时发生的事件。如A∩B为不可能事件(A∩B=Φ),那么称事件A与事件B互斥,其含义是:事件A与事件B在任何一次试验中不会同时发生。
从集合的角度来看,事件A、B互斥,是指事件A所含的结果组成的集合与事件B所含的结果组成的集合的交集为空集,则有P(A+B)=card(A+B)/card(I)=card(A)+card(B)/card(I)=card(A)/card(I)+card(B)/card(I)=P(A)+P(B)。
事件A与B对立,是指事件B所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的补集,即A∩B=Φ ,且A∪B=I。