怎样证明矩阵可逆?
1个回答
展开全部
问题一:怎么去证明一个矩阵是可逆矩阵 A可逆
Ax=0 只有零解
Ax=b 总是有解
A 的列向量组线性无关
A 的行向量组线性无关
A 的特征值都不等于零
等等......
方法多多,要看具体情况
问题二:如何证明一个矩阵可逆? 1.利用定义,AB=BA=E,如果存在矩阵B,则B为A的可逆矩阵,A就可逆。
2.判断是否为满秩矩阵,若是,则可逆。
3 看这个矩阵的行列式值是够为0,若不为0,则可逆。
4 利用初等矩阵判断,若是初等矩阵,则一定可逆。
问题三:用矩阵分块的方法,证明矩阵可逆,并求其可逆矩阵 30分 先降阶再用楼上那公式呗,结果一样。
问题四:怎样判断一个矩阵是否可逆 首先,可逆矩阵A一定是n阶方阵
判断方法
A的行列式不为0
A的秩等于n(满秩)
A的转置矩阵可逆
A的转置矩阵乘以A可逆
存在一个n阶方阵B使得AB或者BA=单位矩阵
Ax=0 只有零解
Ax=b 总是有解
A 的列向量组线性无关
A 的行向量组线性无关
A 的特征值都不等于零
等等......
方法多多,要看具体情况
问题二:如何证明一个矩阵可逆? 1.利用定义,AB=BA=E,如果存在矩阵B,则B为A的可逆矩阵,A就可逆。
2.判断是否为满秩矩阵,若是,则可逆。
3 看这个矩阵的行列式值是够为0,若不为0,则可逆。
4 利用初等矩阵判断,若是初等矩阵,则一定可逆。
问题三:用矩阵分块的方法,证明矩阵可逆,并求其可逆矩阵 30分 先降阶再用楼上那公式呗,结果一样。
问题四:怎样判断一个矩阵是否可逆 首先,可逆矩阵A一定是n阶方阵
判断方法
A的行列式不为0
A的秩等于n(满秩)
A的转置矩阵可逆
A的转置矩阵乘以A可逆
存在一个n阶方阵B使得AB或者BA=单位矩阵
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询