设A是m*n矩阵,证明齐次线性方程组Ax=0与ATAx=0同解.
展开全部
证明:
若AX1=0, 则 A^TAX1 = 0
即 AX=0 的解都是 A^TAX=0 的解
若 A^TAX2 = 0
则 X2^T A^TAX2 = 0
所以 (AX2)^T(AX2) = 0
所以 AX2 = 0 -- 这里要求A是实矩阵
-- 提示: AX2 是一个列向量
所以 A^TAX=0 的解也是 AX=0 的解
所以 齐次线性方程组Ax=0与A^TAx=0同解
若AX1=0, 则 A^TAX1 = 0
即 AX=0 的解都是 A^TAX=0 的解
若 A^TAX2 = 0
则 X2^T A^TAX2 = 0
所以 (AX2)^T(AX2) = 0
所以 AX2 = 0 -- 这里要求A是实矩阵
-- 提示: AX2 是一个列向量
所以 A^TAX=0 的解也是 AX=0 的解
所以 齐次线性方程组Ax=0与A^TAx=0同解
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
创远信科
2024-07-24 广告
2024-07-24 广告
作为上海创远仪器技术股份有限公司的团队成员,我们积累了广泛的介电常数数据。这些数据覆盖了从常见物质如空气、水、塑料到专业材料如聚苯乙烯、环乙醇等的介电常数。通过精心整理和分析,我们汇编了介电常数表合集,为客户提供了宝贵的参考信息。这些数据不...
点击进入详情页
本回答由创远信科提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询