求:lim(x趋向0)∫(0到x)sintdt/∫(0到x)tdt的极限,?
1个回答
展开全部
设(cos0-cosx)/(x^/2)=a
原式=lim(x趋向0)(cos0-cosx)/[(x^/2)-0]
=a
=lim(x趋向0)(1-cosx)/(x^/2)
=d[(1-cosx)/x]/dx (x趋向0)
=sinx/x-(1-cosx)/(x^/2) (x趋向0)
=1-(1-cosx)/(x^/2) (x趋向0)
=1-a
所以a=1-a
a=1/2
所以lim(x趋向0)∫(0到x)sintdt/∫(0到x)tdt的极限为1/2,10,原式属于0/0型极限,可用洛泌塔法则
原极限=Lim(x->0)(Sinx/x)=1,3,
原式=lim(x趋向0)(cos0-cosx)/[(x^/2)-0]
=a
=lim(x趋向0)(1-cosx)/(x^/2)
=d[(1-cosx)/x]/dx (x趋向0)
=sinx/x-(1-cosx)/(x^/2) (x趋向0)
=1-(1-cosx)/(x^/2) (x趋向0)
=1-a
所以a=1-a
a=1/2
所以lim(x趋向0)∫(0到x)sintdt/∫(0到x)tdt的极限为1/2,10,原式属于0/0型极限,可用洛泌塔法则
原极限=Lim(x->0)(Sinx/x)=1,3,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询