高数中,等价无穷小的替换公式是如何的?

 我来答
分享社会民生
高粉答主

2022-09-25 · 热爱社会生活,了解人生百态
分享社会民生
采纳数:1248 获赞数:283353

向TA提问 私信TA
展开全部

等价无穷小的替换公式如下:

当x趋近于0时:

e^x-1~x;

ln(x+1)~x;

sinx~x;

arcsinx~x;

tanx~x;

arctanx~x;

1-cosx~(x^2)/2;

tanx-sinx~(x^3)/2;

(1+bx)^a-1~abx。



扩展资料:

高数极限等价无穷小替换公式背景:

历史上是柯西(Cauchy,A.-L.)首先较为明确地给出了极限的一般定义。他说,“当为同一个变量所有的一系列值无限趋近于某个定值,并且最终与它的差要多小就有多小”(《分析教程》,1821),这个定值就称为这个变量的极限。

其后,外尔斯特拉斯(Weierstrass,K.(T.W.))按照这个思想给出严格定量的极限定义,这就是数学分析中使用的ε-δ定义或ε-Ν定义等。从此,各种极限问题才有了切实可行的判别准则。在分析学的其他学科中,极限的概念也有同样的重要性,在泛函分析和点集拓扑等学科中还有一些推广。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式