反函数导数是原函数导数的倒数

 我来答
世纪网络17
2022-09-23 · TA获得超过5947个赞
知道小有建树答主
回答量:2426
采纳率:100%
帮助的人:142万
展开全部
原函数的导数等于反函数导数的倒数。
设y=f(x),其反函数为x=g(y)
可以得到微分关系式:dy=(df/dx)dx ,dx=(dg/dy)dy .
那么,由导数和微分的关系我们得到,
原函数的导数是 df/dx = dy/dx,
反函数的导数是 dg/dy = dx/dy .
所以,可以得到 df/dx = 1/(dg/dx) .

扩展资料

  反函数存在定理:、

  定理:严格单调函数必定有严格单调的反函数,并且二者单调性相同。

  在证明这个定理之前先介绍函数的严格单调性。

  设y=f(x)的定义域为D,值域为f(D)。如果对D中任意两点x1和x2,当x1y2,则称y=f(x)在D上严格单调递减。

  证明:设f在D上严格单增,对任一y∈f(D),有x∈D使f(x)=y。

  而由于f的严格单增性,对D中任一x'x,都有y''>y。总之能使f(x)=y的`x只有一个,根据反函数的定义,f存在反函数f-1。

  任取f(D)中的两点y1和y2,设y1

  若此时x1≥x2,根据f的严格单增性,有y1≥y2,这和我们假设的y1

  因此x1

  如果f在D上严格单减,证明类似。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式