n为正整数,证明8^2n+1+7^(n+2)是57的倍数

 我来答
新科技17
2022-08-02 · TA获得超过5877个赞
知道小有建树答主
回答量:355
采纳率:100%
帮助的人:73.8万
展开全部
数学归纳法:
n=1时,8^(2n+1)+7^(n+2)=8^3+7^3=855=57*15成立
假设n=k时成立,即8^2n+1+7^(n+2)是57的倍数,于是有8^(2k+1)+7^(k+2)=57m,m是正整数
当n=k+1时,8^[2(k+1)+1]+7^(k+1+2)=8^(2k+1)+7^(k+2)+8^3+7^3=57m+57*15=57(m+15)
命题成立
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式