求下列方程所确定的隐函数y的导数dy/dx:(1)xy=e^(x+y). (2)arctan(y?
1个回答
展开全部
1)两边对x求导:
y+xy'=e^(x+y)(1+y')
y'=[e^(x+y)-y]/[x-e^(x+y)]
2)两边对x求导:
1/(1+y^2/x^2)* (y'x-y)/x^2=1/2* 1/(x^2+y^2)*(2x+2yy')
y'x-y=x+yy'
y'=(x+y)/(x-y),0,求下列方程所确定的隐函数y的导数dy/dx:(1)xy=e^(x+y). (2)arctan(y
求下列方程所确定的隐函数y的导数dy/dx:(1)xy=e^(x+y). (2)arctan(y/x)=ln根号下(x^2+y^2)
y+xy'=e^(x+y)(1+y')
y'=[e^(x+y)-y]/[x-e^(x+y)]
2)两边对x求导:
1/(1+y^2/x^2)* (y'x-y)/x^2=1/2* 1/(x^2+y^2)*(2x+2yy')
y'x-y=x+yy'
y'=(x+y)/(x-y),0,求下列方程所确定的隐函数y的导数dy/dx:(1)xy=e^(x+y). (2)arctan(y
求下列方程所确定的隐函数y的导数dy/dx:(1)xy=e^(x+y). (2)arctan(y/x)=ln根号下(x^2+y^2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询